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Preface

The main thesis of this book is that using only classic χ2 statistics is no longer appropriate,
that the simple root-mean-square and cumulative statistics of Kolmogorov and Smirnov and
others are often superior now that computers are widely available.

This book concerns the significance testing covered in introductory courses on statistics
— including those at the high-school (advanced-placement) and undergraduate levels — and
should be accessible to anyone familiar with elementary (discrete) probability theory. We
have tried to make the individual chapters largely self-contained, so that the reader may
focus on the topics of greatest interest for a given application. An expert can start directly
with the relevant chapter. For readers without any particular application in mind, we rec-
ommend starting with either the appendix, which discusses nuisance parameters in general,
or Chapter 1, which discusses goodness-of-fit testing (with or without nuisance parameters).
Chapter 2 provides rules-of-thumb for choosing measures of discrepancy, based on whether
the data is nominal or ordinal. Chapter 3 presents an application to elementary population
genetics. Chapter 4 discusses tests for homogeneity in contingency-tables/cross-tabulations.
Chapter 5 discusses goodness-of-fit testing for generalized linear models (including logistic
and Poisson regressions). Chapter 6 discusses asymptotic distributions of statistics in the
limit of large numbers of draws. Chapter 7 extends the methods of Chapter 6 to models with
nuisance parameters. Chapter 8 discusses asymptotic power in the limit of large numbers of
draws. The appendix discusses nuisance parameters in detail.

A premier application of significance testing is checking for proper randomization in
statistical studies. For instance, while perfect randomization in medical trials or econometric
investigations is not always feasible, best practices nevertheless require that the ethnicities
in the case/treated and control groups be consistent with having arisen as independent
and identically distributed (i.i.d.) draws from the pooled case-control sample (that is, that
pooling the estimates of ethnic prevalences is permissible). Chapter 4 discusses such tests;
Chapters 1 and 3 discuss simpler variants. For example, a study that detects a difference
in outcomes between a largely Irish case/treated group and a largely Italian control group
may not be detecting a difference between the treatment case and the placebo control. The
classical χ2, likelihood-ratio, G2, and other tests from the Cressie-Read power-divergence
family can be blind to such a discrepancy in ethnicities, unlike the root-mean-square. We
recommend using both a classical statistic (such as χ2) and either the root-mean-square or
one of the cumulative variants discussed in Chapter 2.

Will Perkins
Mark Tygert
Rachel Ward
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Chapter 1

Goodness of fit for distributional
profile

Goodness-of-fit tests based on the root-mean-square distance often outperform χ2 and other
classical tests (including the standard exact tests) by at least an order of magnitude when
the model being tested for goodness-of-fit is a discrete probability distribution that is not
close to uniform. The present chapter discusses numerous examples of this. Goodness-
of-fit tests based on the root-mean-square are now practical and convenient: although the
actual values taken by the root-mean-square and similar goodness-of-fit statistics are seldom
interpretable without the aid of a computer, black-box software can rapidly calculate their
precise significance.

1.1 Introduction

A basic task in statistics is to ascertain whether a given set of independent and identically
distributed (i.i.d.) draws does not come from a given “model,” where the model may consist
of either a single fully specified probability distribution or a parameterized family of proba-
bility distributions. The present chapter concerns the case in which the draws are discrete
random variables, taking values in a finite or countable set. In accordance with the standard
terminology, we will refer to the possible values of the discrete random variables as “bins”
(“categories,” “cells,” and “classes” are common synonyms for “bins”).

A natural approach to ascertaining whether the i.i.d. draws do not come from the model
uses a root-mean-square statistic. To construct this statistic, we estimate the probability
distribution over the bins using the given i.i.d. draws, and then measure the root-mean-
square difference between this empirical distribution and the model distribution (see, for
example, Rao, 2002; Varadhan et al., 1974, page 123; or Section 1.2 below). If the draws do
in fact arise from the model, then with high probability this root-mean-square is not large.
Thus, if the root-mean-square statistic is large, then we can be confident that the draws were
not taken i.i.d. from the model.

To quantify “large” and “confident,” we denote by x the value of the root-mean-square
for the given i.i.d. draws; we denote by X the root-mean-square constructed for different
i.i.d. draws that definitely do in fact come from the model (if the model is parameterized,

7



8 CHAPTER 1. GOODNESS OF FIT FOR DISTRIBUTIONAL PROFILE

then we draw from the distribution corresponding to the parameter given by a maximum-
likelihood estimate for the experimental data; see the appendix for discussion of how this
differs from other common choices). The “P-value” P is then defined to be the probability
that X ≥ x (viewing X — but not x — as a random variable). Given the P-value P , we
can have 100(1− P )% confidence that the draws were not taken i.i.d. from the model.

Now, the P-values for the simple root-mean-square statistic can be different functions of
x for different model probability distributions. To avoid this seeming inconvenience asymp-
totically (in the limit of large numbers of draws), K. Pearson replaced the uniformly weighted
mean in the root-mean-square with a weighted average; the weights are the reciprocals of
the model probabilities associated with the various bins. This produces the χ2 statistic
of Pearson (1900) — see, for example, formula (1.2) below. However, when some model
probabilities can be small (relative to others in the same distribution), this weighted average
can involve division by nearly zero. As demonstrated below, dividing by nearly zero severely
restricts the statistical power of χ2 — even in the absence of round-off errors — especially
when dividing by nearly zero for each of many bins. The problem arises whether or not every
bin contains several draws (see Remark 1.1.1). Press (2005) tackled similar issues.

The main thesis of the present chapter is that using only the classic χ2 statistic is no
longer appropriate, that certain alternatives are superior now that computers are widely
available. As illustrated below, the simple root-mean-square, used in conjunction with the
log–likelihood-ratio “G2” goodness-of-fit statistic, is generally preferable to the classic χ2

statistic. (The log–likelihood-ratio also involves division by nearly zero, but tempers this
somewhat via the logarithm.) We do not claim this is always the best alternative. In
fact, the discrete Kolmogorov-Smirnov and related statistics used by Clauset et al. (2009)
and D’Agostino and Stephens (1986) can be more powerful than the root-mean-square when
there is a natural data-independent ordering (or partial order) for the bins — see Chapter 2;
in any case, the discrete Kolmogorov-Smirnov statistic and the root-mean-square are similar
in many ways, and complementary in others. We focus on the root-mean-square because it is
simple and easy to understand; for example, computing the P-values of the root-mean-square
in the limit of large numbers of draws is straightforward, even when estimating continuous
parameters via maximum-likelihood methods, as in Chapters 6 and 7. Moreover, the classic
χ2 statistic is just a weighted version of the root-mean-square, facilitating their comparison.
Classic statistics such as χ2 focus on relative (rather than absolute) discrepancies. Finally,
χ2 and the root-mean-square coincide when the model distribution is uniform.

Please note that all statistical tests reported in this monograph (including those involving
the χ2 statistic) are exact; we compute P-values via Monte-Carlo simulations providing
guaranteed error bounds (see Section 1.3 below). For all numerical results, we generated
random numbers via the C programming language procedure given on page 9 of Marsaglia
(2003), implementing the recommended complementary multiply with carry.

The problem with χ2 is neither subtle nor esoteric. The present chapter surveys many
examples; Chapter 3 below details a specific example from elementary population genetics.

Appropriate rebinning to uniformize the probabilities associated with the bins can miti-
gate much of the problem with χ2. Yet rebinning is a black art that is liable to improperly
influence the result of a goodness-of-fit test. Moreover, rebinning requires careful extra work,
making χ2 less easy-to-use. A principal advantage of the root-mean-square is that it does not
require any rebinning; indeed, the root-mean-square is most powerful without any rebinning.
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Remark 1.1.1. In many of our examples, there is a bin for which the expected number
of draws is very small under the model. Although it is natural for the expected numbers
of draws for some bins to be very small, especially when the model has many bins, the
advantage of the root-mean-square over χ2 is substantial even when the expected number of
draws is at least five for every bin; see, for example, Subsection 1.5.1.1 or Subsection 1.5.2.4.

Remark 1.1.2. Goodness-of-fit tests are probably most useful in practice not for ascertain-
ing whether a model is correct or not, but for determining whether the discrepancy between
the model and the experiment is larger than expected random fluctuations. While models
outside the physical sciences typically are not exactly correct, testing the validity of using
a model for virtually any purpose requires knowing whether observed discrepancies are due
to inaccuracies or inadequacies in the models or (on the contrary) could be due to chance
arising from necessarily finite sample sizes. Thus, goodness-of-fit tests are critical even when
the models are not supposed to be exactly correct, in order to gauge the size of the unavoid-
able random fluctuations. For further clarification, see the remarkably extensive title used
by Pearson (1900) introducing χ2; see also the modern treatments by Gelman et al. (1995)
and Cox (2006).

Remark 1.1.3. The assumption that the given observations are i.i.d. draws is not necessary.
Indeed, all other chapters in this book do not make this assumption. This first chapter focuses
on the i.i.d. case for simplicity. See the appendix for a more general treatment.

1.2 Definitions of the divergences

In this section, we review the definitions of four goodness-of-fit statistics — the root-mean-
square, χ2, the log–likelihood-ratio or G2, and the Freeman-Tukey or Hellinger distance.
The latter three statistics are the best-known members of the standard Cressie-Read power-
divergence family, as discussed by Read and Cressie (1988). We use p

(1)
0 , p

(2)
0 , . . . , p

(m)
0 to

denote the modeled fractions of n i.i.d. draws falling in m bins, numbered 1, 2, . . . , m,
respectively, and we use p̂(1), p̂(2), . . . , p̂(m) to denote the observed fractions of the n draws
falling in the respective bins. That is, p

(1)
0 , p

(2)
0 , . . . , p

(m)
0 are the probabilities associated with

the respective bins in the model distribution, whereas p̂(1), p̂(2), . . . , p̂(m) are the fractions
of the n draws falling in the respective bins when we take the draws from a distribution
that may differ from the model — their actual distribution. Specifically, if i1, i2, . . . , in
are the observed i.i.d. draws, then p̂(j) is 1

n
times the number of i1, i2, . . . , in falling in

bin j, for j = 1, 2, . . . , m. If the model is parameterized by a parameter θ, then the
probabilities p

(1)
0 , p

(2)
0 , . . . , p

(m)
0 are functions of θ; if the model is fully specified, then we can

view the probabilities p
(1)
0 , p

(2)
0 , . . . , p

(m)
0 as constant as functions of θ. We use θ̂ to denote

a maximum-likelihood estimate of θ obtained from p̂(1), p̂(2), . . . , p̂(m).
With this notation, the root-mean-square statistic is

x =

√
√
√
√

1

m

m∑

j=1

(p̂(j) − p
(j)
0 (θ̂))2. (1.1)

We use the designation “root-mean-square” to refer to x.
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The classical Pearson χ2 statistic is

χ2 = n

m∑

j=1

(p̂(j) − p
(j)
0 (θ̂))2

p
(j)
0 (θ̂)

, (1.2)

under the convention that (p̂(j) − p
(j)
0 (θ̂))2/p

(j)
0 (θ̂) = 0 if p

(j)
0 (θ̂) = 0 = p̂(j). We use the

standard designation “χ2” to refer to χ2.
The log–likelihood-ratio or “G2” statistic is

g2 = 2n

m∑

j=1

p̂(j) ln

(

p̂(j)

p
(j)
0 (θ̂)

)

, (1.3)

under the convention that p̂(j) ln(p̂(j)/p
(j)
0 (θ̂)) = 0 if p̂(j) = 0. We use the common designation

“G2” to refer to g2.
The Freeman-Tukey or Hellinger-distance statistic is

h2 = 4n

m∑

j=1

(
√

p̂(j) −
√

p
(j)
0 (θ̂)

)2

= 4n

m∑

j=1

[

(p̂(j) − p
(j)
0 (θ̂))2

/(
√

p̂(j) +

√

p
(j)
0 (θ̂)

)2
]

.

(1.4)
We use the well-known designation “Freeman-Tukey” to refer to h2.

In the limit that the number n of draws is large, the distributions of χ2 defined in (1.2),
g2 defined in (1.3), and h2 defined in (1.4) are all the same when the actual underlying
distribution of the draws comes from the model, as discussed, for example, by Rao (2002).
However, when the number n of draws is not large, then their distributions can differ substan-
tially. In all our data and power analyses, we compute P-values via Monte-Carlo simulations,
without relying on the number n of draws to be large.

1.3 Computation of P-values

We need to compute the P-value assessing the consistency of the experimental data with
assuming

H0 : the data arises as i.i.d. draws from p0(θ̂), for the particular observed value of θ̂,
(1.5)

where θ̂ is a maximum-likelihood estimate of θ (if the model is fully specified, then the
probability distribution p0(θ) is the same for all θ); see the appendix for discussion of this
hypothesis and several alternatives (including “P-values” that differ from those used below).

Remark 1.3.1. The parameter θ can be integer-valued, real-valued, complex-valued, vector-
valued, matrix-valued, or any combination of the many possibilities. For instance, when we
do not know the proper ordering of the bins a priori, we must include a parameter that
contains a permutation (or permutation matrix) specifying the order of the bins; maximum-
likelihood estimation then entails sorting the model and all empirical frequencies (whether
experimental or simulated) — see Subsection 1.4.2 for details. With the Monte-Carlo scheme
described below, we need not contemplate how many degrees of freedom are in a permutation.
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For the computation of P-values, we can use Monte-Carlo simulations (very similar to
those used by Clauset et al. (2009)). First, we estimate the parameter θ from the n given
experimental draws, obtaining θ̂, and calculate the statistic (χ2, G2, Freeman-Tukey, or
the root-mean-square), using the given data and taking the model distribution to be p0(θ̂).
We then run many simulations. To conduct a single simulation, we perform the following
three-step procedure:

1. we generate n i.i.d. draws according to the model distribution p0(θ̂), where θ̂ is the
estimate calculated from the experimental data,

2. we estimate the parameter θ from the data generated in Step 1, obtaining a new
estimate θ̃, and

3. we calculate the statistic under consideration (χ2, G2, Freeman-Tukey, or the root-
mean-square), using the data generated in Step 1 and taking the model distribution
to be p0(θ̃), where θ̃ is the estimate calculated in Step 2 from the data generated in
Step 1.

After conducting many such simulations, we may estimate the P-value for assuming (1.5) as
the fraction of the statistics calculated in Step 3 that are greater than or equal to the statistic
calculated from the empirical data. The accuracy of the estimated P-value is inversely
proportional to the square root of the number of simulations conducted; for details, see
Remark 1.3.2 below. This procedure works since, by definition, the P-value is the probability
that

d















P̂ (1)

P̂ (2)

...

P̂ (m)








,








p
(1)
0 (Θ̂)

p
(2)
0 (Θ̂)
...

p
(m)
0 (Θ̂)















≥ d















p̂(1)

p̂(2)

...
p̂(m)








,








p
(1)
0 (θ̂)

p
(2)
0 (θ̂)
...

p
(m)
0 (θ̂)














, (1.6)

where

• m is the number of all possible values that the draws can take,

• d is the measure of the discrepancy between two probability distributions over m bins
(i.e., between two vectors each with m entries) that is associated with the statistic
under consideration (d is the Euclidean distance for the root-mean-square, a weighted
Euclidean distance for χ2, the Hellinger distance for the Freeman-Tukey statistic, and
the relative entropy — the Kullback-Leibler divergence — for the log–likelihood-ratio),

• p̂(1), p̂(2), . . . , p̂(m) are the fractions of the n given experimental draws falling in the
respective bins,

• θ̂ is the estimate of θ obtained from p̂(1), p̂(2), . . . , p̂(m),

• P̂ (1), P̂ (2), . . . , P̂ (m) are the fractions of n i.i.d. draws falling in the respective bins
when taking the draws from the distribution p0(θ̂) assumed in (1.5), and
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• Θ̂ is the estimate of the parameter θ obtained from P̂ (1), P̂ (2), . . . , P̂ (m) (note that
Θ̂ is not necessarily equal to θ̂: even under the null hypothesis, repetitions of the
experiment could yield different estimates of the parameter; Remark A.4.2 discusses a
consequence).

When taking the probability that (1.6) occurs, only the left-hand side is random — we regard
the left-hand side of (1.6) as a random variable and the right-hand side as a fixed number
determined via the experimental data. As with any probability, to compute the probability
that (1.6) occurs, we can calculate many independent realizations of the random variable and
observe that the fraction which satisfy (1.6) is a good approximation to the probability when
the number of realizations is large; Remark 1.3.2 details the accuracy of the approximation.
(The procedure in the present section follows this prescription to estimate P-values.)

Remark 1.3.2. The standard error of the estimate from the present section for an exact
P-value P is

√

P (1− P )/ℓ, where ℓ is the number of Monte-Carlo simulations conducted
to produce the estimate. Indeed, each simulation has probability P of producing a statistic
that is greater than or equal to the statistic corresponding to an exact P-value of P . Since
the simulations are all independent, the number of the ℓ simulations that produce statistics
greater than or equal to that corresponding to P-value P follows the binomial distribution
with ℓ trials and probability P of success in each trial. The standard deviation of the
number of simulations whose statistics are greater than or equal to that corresponding to
P-value P is therefore

√

ℓP (1− P ), and so the standard deviation of the fraction of the

simulations producing such statistics is
√

P (1− P )/ℓ. Of course, the fraction itself is the
Monte-Carlo estimate of the exact P-value (we use this estimate in place of the unknown P
when calculating the standard error

√

P (1− P )/ℓ).

1.4 Data analysis

In this section, we use several data sets to investigate the performance of goodness-of-fit
statistics. Here, the root-mean-square generally performs better than the classical statistics.
We take the position that a user of statistics should not have to worry about rebinning; we
discuss rebinning only briefly. We compute all P-values via Monte Carlo as in Section 1.3;
Remark 1.3.2 details the guaranteed accuracy of the computed P-values.

1.4.1 Synthetic examples

To better explicate the performance of the goodness-of-fit statistics, we first analyze some
toy examples. We consider the model distribution

p
(1)
0 =

1

4
, (1.7)

p
(2)
0 =

1

4
, (1.8)

and

p
(j)
0 =

1

2m− 4
(1.9)
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for j = 3, 4, . . . , m. For the empirical distribution, we first use n = 20 draws, with 15 in the
first bin, 5 in the second bin, and no draw in any other bin. This data is clearly unlikely to
arise from the model specified in (1.7)–(1.9), but we would like to see exactly how well the
various goodness-of-fit statistics detect the discrepancy.

Figure 1.1 plots the P-values for testing whether the empirical data arises from the model
specified in (1.7)–(1.9). We computed the P-values via 4,000,000 Monte-Carlo simulations
(i.e., 4,000,000 per empirical P-value being evaluated), with each simulation taking n =
20 draws from the model. The root-mean-square consistently and with extremely high
confidence rejects the hypothesis that the data arises from the model, whereas the classical
statistics find less and less evidence for rejecting the hypothesis as the number m of bins
increases; in fact, the P-values for the classical statistics get very close to 1 as m increases
— the discrepancy of (1.9) from 0 is usually less than the discrepancy of (1.9) from a typical
realization drawn from the model, since under the model the sum of the expected numbers
of draws in bins 3, 4, . . . , m is n/2 for any m.

Figure 1.1 demonstrates that the root-mean-square rejects the invalid model with nearly
100% confidence while the classical statistics report nearly 0% confidence for rejection. Also,
the model for smaller m can be viewed as a rebinning of the model for larger m. The
classical statistics do reject the model for smaller m, while asserting for larger m that there
is no evidence for rejecting the model. The performance of the classical statistics depends
dramatically on the number (m − 2) of unlikely bins in the model, even though the data
are the same for all m. This suggests a scheme for supporting any model (no matter how
invalid) with arbitrarily high P-values: just append enough irrelevant, more or less uniformly
improbable bins to the model, and then report the P-values for the classical goodness-of-fit
statistics. In contrast, the root-mean-square robustly and reliably rejects the invalid model,
independently of the size of the model.

We will see in the following section that the classic Zipf power law behaves similarly.
For another example, we again consider the model specified in (1.7)–(1.9). For the em-

pirical distribution, we now use n = 96 draws, with 36 in the first bin, 12 in the second bin,
1 each for bins 3, 4, . . . , 50, and no draw in any other bin. As before, this data is unlikely
to arise from the model specified in (1.7)–(1.9), but we would like to see exactly how well
the various goodness-of-fit statistics detect the discrepancy.

Figure 1.2 plots the P-values for testing whether the empirical data arises from the model
specified in (1.7)–(1.9). We computed the P-values via 160,000 Monte-Carlo simulations
(that is, 160,000 per empirical P-value being evaluated), with each simulation taking n = 96
draws from the model. Again the root-mean-square consistently rejects the hypothesis that
the data arises from the model, whereas the classical statistics find little evidence for rejecting
the manifestly invalid model.

1.4.2 Zipf’s power law of word frequencies

Zipf popularized his eponymous law by analyzing four “chief sources of statistical data re-
ferred to in the main text” (this is a quotation from the “Notes and References” section —
page 311 — of Zipf (1935)); the chief source for the English language is Eldridge (2010). We
revisit the data of Eldridge (2010) in the present subsection to assess the performance of the
goodness-of-fit statistics.
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Figure 1.1: P-values for the hypothesis that the model (1.7)–(1.9) agrees with the data of
15 draws in the first bin, 5 draws in the second bin, and no draw in any other bin
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Figure 1.2: P-values for the hypothesis that the model (1.7)–(1.9) agrees with the data of
36 draws in the first bin, 12 draws in the second bin, 1 draw each in bins 3, 4, . . . , 50, and
no draw in any other bin
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We first analyze List 1 of Eldridge (2010), which consists of 2,890 different English words,
such that there are 13,825 words in total counting repetitions; the words come from the
Buffalo Sunday News of August 8, 1909. We randomly choose n = 10,000 of the 13,825 words
to obtain a corpus of n = 10,000 draws over 2,890 bins. Figure 1.3 plots the frequencies of the
different words when sorted in rank order (so that the frequencies are nonincreasing). Using
goodness-of-fit statistics we test the significance of the (null) hypothesis that the empirical
draws actually arise from the Zipf distribution

p
(j)
0 (θ) =

C1

θ(j)
(1.10)

for j = 1, 2, . . . , m, where θ is a permutation of the integers 1, 2, . . . , m, and

C1 =
1

∑m
j=1 1/j

; (1.11)

we estimate the permutation θ via maximum-likelihood methods, that is, by sorting the
frequencies: first we choose j1 to be the number of a bin containing the greatest number of
draws among all m bins, then we choose j2 to be the number of a bin containing the greatest
number of draws among the remaining m− 1 bins, then we choose j3 to be the number of a
bin containing the greatest among the remaining m− 2 bins, and so on, and finally we find
θ such that θ(j1) = 1, θ(j2) = 2, . . . , θ(jm) = m. We have to obtain the ordering θ from the
data via such sorting since we do not know the proper ordering a priori.

Similarly, we do not know the proper value of the number m of bins, so in Figure 1.4 we
plot P-values (each computed via 40,000 Monte-Carlo simulations) for varying values of m;
although List 1 of Eldridge (2010) involves only 2,890 distinct words, we must also include
bins for words that did not appear in the original list, words whose frequencies are zeros for
List 1 of Eldridge (2010). Note that Figure 1.4 displays the P-values with m = 2,890 for
reference, even though m must be independent of the data, and so m must be substantially
larger than 2,890 in order for the assumptions of goodness-of-fit testing to hold.

With respect to testing goodness-of-fit, the number m of bins is the number of words in
the dictionary from which List 1 of Eldridge (2010) was drawn. It is not clear a priori which
dictionary is appropriate. The P-values for the root-mean-square are always 0 to several
digits of accuracy, independent of the value of m — the root-mean-square determines that
List 1 does not follow the classic Zipf distribution (defined in (1.10) and (1.11)) for any m. In
contrast, the P-values for the classical statistics vary significantly depending on the value of
m. In fact, for any of the classical statistics, and for any prescribed number P between 0.05
and 0.95, there is at least one value of m between 4,000 and 40,000 such that the P-value is
P . Thus, without knowing the proper size of the dictionary a priori, the classical statistics
give no information.

Furthermore, analyzing List 5 of Eldridge (2010) produces results analogous to those
reported above for List 1. List 5 consists of 6,002 different English words, such that there
are 43,989 words in total counting repetitions; the words come from amalgamating Lists 1–4
of Eldridge (2010). We randomly choose n = 20,000 of the 43,989 words to obtain a corpus
of n = 20,000 draws over 6,002 bins. Figure 1.5 plots the frequencies of the different words
when sorted in rank order (so that the frequencies are nonincreasing).
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Again we do not know the proper value of the number m of bins, so in Figure 1.6 we
plot P-values (each computed via 40,000 Monte-Carlo simulations) for varying values of m;
although List 5 of Eldridge (2010) involves only 6,002 distinct words, we must also include
bins for words that did not appear in the original list, words whose frequencies are zeros
for List 5 of Eldridge (2010). Please note that Figure 1.6 displays the P-values with m =
6,002 for reference, even though m must be independent of the data, and so m must be
substantially larger than 6,002 in order for the assumptions of goodness-of-fit testing to
hold. Comparing Figures 1.4 and 1.6 shows that the above remarks about List 1 pertain to
the analysis of the larger List 5, too. Once again, without knowing the proper size of the
dictionary a priori, the classical statistics give no information.

Interestingly, by introducing parameters θ1, θ2, and θ3 to fit perfectly the bins containing
the three greatest numbers of draws, a truncated power-law becomes a good fit for the corpus
of 20,000 words drawn randomly from List 5 of Eldridge (2010), with the number m of bins
set to 7,500. Indeed, let us consider the model

p
(j)
0 (θ0, θ1, θ2, θ3, θ4) =







θ1, θ0(j) = 1
θ2, θ0(j) = 2
θ3, θ0(j) = 3
C/(θ0(j))

θ4, θ0(j) = 4, 5, . . . , 7500

, (1.12)

where

C = Cθ1,θ2,θ3,θ4 =
1− θ1 − θ2 − θ3
∑7500

j=4 1/jθ4
, (1.13)

with θ0 being a permutation of the integers 1, 2, . . . , 7500, and θ1, θ2, θ3, θ4 being nonnegative
real numbers; we estimate θ0, θ1, θ2, θ3, θ4 via maximum-likelihood methods, determining
θ0 by sorting as discussed above, and setting θ1, θ2, and θ3 to be the three greatest relative
frequencies. This model fits the empirical data exactly in the bins whose probabilities under
the model are θ1, θ2, and θ3 — there will be no discrepancy between the data and the model
in those bins — so that these bins do not contribute to any goodness-of-fit statistic, aside
from altering the number of draws in the remaining bins. Of the 20,000 total draws in
the given experimental data, 16,486 do not fall in the bins associated with the three most
frequently occurring words. The maximum-likelihood estimate of the power-law exponent
θ4 for the experimental data turns out to be about 1.0484.

For the model defined in (1.12) and (1.13), the P-values calculated via 4,000,000 Monte-
Carlo simulations are

• χ2: .510

• G2 (the log–likelihood-ratio): .998

• Freeman-Tukey (the Hellinger distance): 1.000

• root-mean-square: .587

Thus, all four statistics indicate that the truncated power-law model defined in (1.12)
and (1.13) is a good fit. This is in accord with Figure 1.5, in which all but the three
greatest frequencies appear to follow a truncated power-law.
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Figure 1.3: Numbers of occurrences of the various words (one bin for each distinct word) in
a corpus of 10,000 random draws from List 1 of Eldridge (2010)
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Figure 1.4: P-values for the data plotted in Figure 1.3 to follow the Zipf distribution
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Figure 1.5: Numbers of occurrences of the various words (one bin for each distinct word) in
a corpus of 20,000 random draws from List 5 of Eldridge (2010)
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Table 1.1: Numbers of α-particles emitted by a film of polonium in 2608 intervals of 7.5
seconds

number of particles observed
bin number in an interval of 7.5 seconds number of such intervals

1 0 57
2 1 203
3 2 383
4 3 525
5 4 532
6 5 408
7 6 273
8 7 139
9 8 45
10 9 27
11 10 10
12 11 4
13 12 0
14 13 1
15 14 1

16, 17, 18, . . . 15, 16, 17, . . . 0
1, 2, 3, 4, 5, . . . 0, 1, 2, 3, 4, . . . 2608

1.4.3 A Poisson law for radioactive decays

Table 1.1 summarizes the classic example of a Poisson-distributed experiment in radioactive
decay of Rutherford et al. (1910); Figure 1.7 plots the data, along with the Poisson distri-
bution whose mean is the same as the data’s. Figure 1.8 reports the P-values for testing
whether the data, while retaining only bins 1, 2, . . . , m, are distributed according to a
Poisson distribution (the model Poisson distribution is also truncated to the first m bins,
with the mean estimated from the data). Since the total number n of draws depends little
on the numbers in bins 13, 14, 15, . . . , the truncation amounts to ignoring draws in bins
m+1, m+2, m+3, . . . when m ≥ 12, and demonstrates that the scant experimental draws
in bins 13–15 strongly influence the P-values of the classical statistics. We computed the
P-values via 40,000 Monte-Carlo simulations (for each number m of bins and each of the
four statistics), estimating the mean of the model Poisson distribution for each simulated
data set. All four goodness-of-fit statistics indicate reasonably good agreement between the
data and a Poisson distribution; the classical statistics are very sensitive in the tail to dis-
crepancies between the data and the model distribution, whereas the root-mean-square is
relatively insensitive to the truncation after 12 or more bins.
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Figure 1.7: The data in Table 1.1 (the dots) and the best-fit Poisson distribution (the lines)
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Table 1.2: Numbers of yeast cells in 400 squares of a hæmacytometer

bin number number of yeast in a square number of such squares
1 0 0
2 1 20
3 2 43
4 3 53
5 4 86
6 5 70
7 6 54
8 7 37
9 8 18
10 9 10
11 10 5
12 11 2
13 12 2

14, 15, 16, . . . 13, 14, 15, . . . 0
1, 2, 3, 4, 5, . . . 0, 1, 2, 3, 4, . . . 400

1.4.4 A Poisson law for counting with a hæmacytometer

Page 357 of Student (1907) reports on the number of yeast cells observed in each of 400
squares in a hæmacytometer microscope slide. Table 1.2 displays the counts; Figure 1.9
plots them, along with the Poisson distribution whose mean matches the data’s. The P-
values for the data to arise from a Poisson distribution (with the mean estimated from the
data) are

• χ2: .627

• G2 (the log–likelihood-ratio): .365

• Freeman-Tukey (the Hellinger distance): .111

• root-mean-square: .490

We calculated the P-values via 4,000,000 Monte-Carlo simulations, estimating the mean of
the model Poisson distribution for each simulated data set. Evidently, all four statistics
report that a Poisson distribution is a reasonably good model for the experimental data.

1.4.5 Symmetry between the self-reported health assessments of

foreign- and US-born Asian Americans

Using propensity scores, Erosheva et al. (2007) matched each of 335 surveyed foreign-born
Asian Americans to a similar surveyed US-born Asian American. Table 1.3 duplicates Ta-
ble 4 of Erosheva et al. (2007), tabulating the numbers of matched pairs reporting various
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Figure 1.9: The data in Table 1.2 (the dots) and the best-fit Poisson distribution (the lines)

combinations of physical health; the propensity scores were generated without reference to
the health ratings. Table 1.3 does not reveal any significant difference between foreign-born
Asian Americans’ ratings of their health and US-born Asian Americans’. Indeed, the P-values
calculated via 4,000,000 Monte-Carlo simulations for testing the symmetry of Table 1.3 are

• χ2: .784

• G2 (the log–likelihood-ratio): .739

• Freeman-Tukey (the Hellinger distance): .642

• root-mean-square: .973

After noting that χ2 does not reveal any statistically significant asymmetry in Table 1.3,
Erosheva et al. (2007) reported that, “to address the issue of power of this test, we investi-
gated what is the smallest departure from symmetry that our test could detect. . . .” Such an
investigation requires considering modifications to Table 1.3. Table 1.4 provides one possible
modification. The P-values calculated via 4,000,000 Monte-Carlo simulations for testing the
symmetry of Table 1.4 are

• χ2: .109

• G2 (the log–likelihood-ratio): .123

• Freeman-Tukey (the Hellinger distance): .155

• root-mean-square: .014
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Table 1.3: Self-reported physical health for matched pairs of Asian Americans

foreign-born

excellent very good good fair poor
excellent 10 21 22 5 0
very good 24 53 43 15 3

US-born good 21 43 34 11 0
fair 3 11 8 4 1
poor 1 1 1 0 0

Table 1.4: A variation on Table 1.3

foreign-born

excellent very good good fair poor
excellent 10 21 22 5 0
very good 24 53 56 15 3

US-born good 21 30 34 11 0
fair 3 11 8 4 1
poor 1 1 1 0 0

Evidently, the root-mean-square is more powerful for detecting the asymmetry of Table 1.4.

Table 1.5 provides another hypothetical cross-tabulation. The P-values calculated via
64,000,000 Monte-Carlo simulations for testing the symmetry of Table 1.5 are

• χ2: .0015

• G2 (the log–likelihood-ratio): .00016

• Freeman-Tukey (the Hellinger distance): .000006, i.e., 6E–6

• root-mean-square: .131

The classical statistics are much more powerful for detecting the asymmetry of Table 1.5, con-
trasting how the root-mean-square is more powerful for detecting the asymmetry of Table 1.4.
Indeed, the root-mean-square statistic is not very sensitive to relative discrepancies between
the model and actual distributions in bins whose associated model probabilities are small.
When sensitivity in these bins is desirable, we recommend using both the root-mean-square
statistic and an asymptotically equivalent variation of χ2 such as the log–likelihood-ratio G2.
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Table 1.5: Another variation on Table 1.3

foreign-born

excellent very good good fair poor
excellent 10 21 22 5 0
very good 24 53 43 15 3

US-born good 21 43 34 19 0
fair 3 11 0 4 1
poor 1 1 1 0 0

1.4.6 A modified geometric law for the species of butterflies

Fisher et al. (1943) reported on 5300 butterflies from 217 readily identified species (these
exclude the 23 most common readily identified species) that they collected via random sam-
pling at the Rothamsted Experimental Station in England. Figure 1.10 plots the numbers
of individual butterflies collected from the 217 species when sorted in rank order (so that
the numbers are nonincreasing).

To build a model appropriate for Figure 1.10, we must include a permutation of the bins
as a parameter, since we have sorted the data (see Subsection 1.4.2 for further discussion of
sorting and permutations). We take the model to be

p
(j)
0 (θ0, θ1) = Aθ1

(θ1)
θ0(j)

√

θ0(j) + 23
(1.14)

for j = 1, 2, . . . , 217, where θ0 is a permutation of the integers 1, 2, . . . , 217, the parameter
θ1 is a positive real number less than 1, and

Aθ1 =
1

∑217
j=1(θ1)

j/
√
j + 23

; (1.15)

we estimate θ0 and θ1 via maximum-likelihood methods (thus obtaining θ0 by sorting the
frequencies into nonincreasing order). Please note that this model is not very carefully chosen
— the model is just a truncated geometric distribution weighted by the nonsingular function
1/
√

θ0(j) + 23, with 23 being the number of common species omitted from the collection.
More complicated models may fit better.

The P-values calculated via 4,000,000 Monte-Carlo simulations are

• χ2: .0050

• G2 (the log–likelihood-ratio): .349

• Freeman-Tukey (the Hellinger distance): .951

• root-mean-square: .00002, i.e., 2E–5
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Figure 1.10: Numbers of specimens (the dots) from 217 species of butterflies (one bin per
species), and the best-fit distribution (the lines)

As Figure 1.10 indicates, the discrepancy between the empirical data and the model is
substantial, and, given the large number of draws (5300), cannot be due solely to random
fluctuations. The log–likelihood-ratio (G2) and Freeman-Tukey statistics are unable to detect
this discrepancy, while the root-mean-square easily determines that the discrepancy is very
highly significant.

1.5 The power and efficiency of the root-mean-square

In this section, we consider many numerical experiments and models, plotting the numbers
of draws required for goodness-of-fit statistics to detect divergence from the models. We
consider both fully specified models and parameterized models. To quantify success at
detecting discrepancies from the models, we use the formulation of the following remark.

Remark 1.5.1. In the present section, we say that a statistic based on given i.i.d. draws
“distinguishes” the actual underlying distribution of the draws from the model distribution
to mean that the computed P-value is at most 1% for 99% of 40,000 simulations, with each
simulation generating n i.i.d. draws according to the actual distribution. We computed the
P-values by conducting another 40,000 simulations, with each simulation generating n i.i.d.
draws according to the model distribution. Section 1.6 uses a weaker notion of “distinguish”
— in Section 1.6 we say that a statistic based on given i.i.d. draws “distinguishes” the
actual underlying distribution of the draws from the model distribution to mean that the
computed P-value is at most 5% for 95% of 40,000 simulations, while running simulations
and computing P-values exactly as for the plots in the present section.
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Figure 1.11: First example, with n = 200 draws; see Subsection 1.5.1.1.

Remark 1.5.2. To compute the P-values for each example in Subsection 1.5.2, we should
in principle calculate the maximum-likelihood estimate θ̂ for each of 40,000 simulations
and (for each goodness-of-fit statistic) use these estimates to perform (40,000)2 times the
three-step procedure described in Section 1.3. The computational costs for generating the
plots in Subsection 1.5.2 would then be excessive. Instead, when computing the P-values
as a function of the value of the statistic under consideration, we calculated θ̂ only once,
using for the empirical data 1,000,000 draws from the underlying distribution, and (for
each goodness-of-fit statistic) performed 40,000 times the three-step procedure described in
Section 1.3, using the single value of θ̂ (but many values of θ̃ from Section 1.3). The parameter
estimates did not vary much over the 40,000 simulations, so approximating the P-values thus
is accurate. Furthermore, when the parameter is just a permutation, as in Subsection 1.5.2.6,
the “approximation” described in the present remark is exactly equivalent to recomputing
the P-values 40,000 times — we are not making any approximation at all. Please note that
we did recalculate the maximum-likelihood estimate θ̂ (and θ̃ from Section 1.3) for each of
40,000 simulations when computing the values of the statistics for the simulation; however,
when calculating the P-values as a function of the values of the statistics, we always drew
from the model distribution associated with the same value of the parameter.

Remark 1.5.3. The root-mean-square statistic is not very sensitive to relative discrepancies
between the model and actual distributions in bins whose associated model probabilities are
small. When sensitivity in these bins is desirable, we recommend using both the root-mean-
square and an asymptotically equivalent variation of χ2, such as the log–likelihood-ratio
“G2.”
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Figure 1.12: First example (statistical “efficiency”); see Subsection 1.5.1.1.

1.5.1 Examples without parameter estimation

1.5.1.1 A simple, illustrative example

Let us first specify the model distribution to be

p
(1)
0 =

1

4
, p

(2)
0 =

1

4
, p

(j)
0 =

1

2m− 4
(1.16)

for j = 3, 4, . . . , m. We consider n i.i.d. draws from the distribution

p(1) =
3

8
, p(2) =

1

8
, p(j) = p

(j)
0 (1.17)

for j = 3, 4, . . . , m, where p
(3)
0 , p

(4)
0 , . . . , p

(m)
0 are the same as in (1.16).

Figure 1.11 plots the percentage of 40,000 simulations, each generating 200 i.i.d. draws
according to the actual distribution defined in (1.17), that are successfully detected as not
arising from the model distribution at the 1% significance level. We computed the P-values
by conducting 40,000 simulations, each generating 200 i.i.d. draws according to the model
distribution defined in (1.16). Figure 1.11 shows that the root-mean-square is successful in
at least 99% of the simulations, while the classical χ2 statistic fails often, succeeding in less
than 80% of the simulations for m = 16, and less than 5% for m ≥ 256.

Figure 1.12 plots the number n of draws required to distinguish the actual distribution
defined in (1.17) from the model distribution defined in (1.16), where “distinguish” is defined
in Remark 1.5.1 above. Figure 1.12 shows the root-mean-square requires about n = 185
draws for any number m of bins, while the classical χ2 statistic requires 90% more draws
for m = 16, and greater than 300% more for m ≥ 128. The classical χ2 statistic requires
increasingly many draws as the number m of bins increases, unlike the root-mean-square.
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Figure 1.13: Second example; see Subsection 1.5.1.2.

1.5.1.2 Truncated power-laws

Next, let us specify the model distribution to be

p
(j)
0 =

C1

j
(1.18)

for j = 1, 2, . . . , m, where

C1 =
1

∑m
j=1 1/j

. (1.19)

We consider n i.i.d. draws from the distribution

p(j) =
C2

j2
(1.20)

for j = 1, 2, . . . , m, where

C2 =
1

∑m
j=1 1/j

2
. (1.21)

Figure 1.13 plots the number n of draws required to distinguish the actual distribution
defined in (1.20) and (1.21) from the model distribution defined in (1.18) and (1.19). (Re-
mark 1.5.1 above specifies what we mean by “distinguish.”) Figure 1.13 shows that the
classical χ2 statistic requires increasingly many draws as the number m of bins increases,
while the root-mean-square exhibits the opposite behavior.
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Figure 1.14: Third example; see Subsection 1.5.1.3.

1.5.1.3 Additional truncated power-laws

Let us again specify the model distribution to be

p
(j)
0 =

C1

j
(1.22)

for j = 1, 2, . . . , m, where

C1 =
1

∑m
j=1 1/j

. (1.23)

We now consider n i.i.d. draws from the distribution

p(j) =
C1/2√

j
(1.24)

for j = 1, 2, . . . , m, where

C1/2 =
1

∑m
j=1 1/

√
j
. (1.25)

Figure 1.14 plots the number n of draws required to distinguish the actual distribution
defined in (1.24) and (1.25) from the model distribution defined in (1.22) and (1.23). (Re-
mark 1.5.1 above specifies what we mean by “distinguish.”) The root-mean-square is not
uniformly more powerful than the other statistics in this example; see Remark 1.5.3 at the
beginning of the present section.
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Figure 1.15: Fourth example; see Subsection 1.5.1.4.

1.5.1.4 Additional truncated power-laws, reversed

Let us next specify the model distribution to be

p
(j)
0 =

C1/2√
j

(1.26)

for j = 1, 2, . . . , m, where

C1/2 =
1

∑m
j=1 1/

√
j
. (1.27)

We now consider n i.i.d. draws from the distribution

p(j) =
C1

j
(1.28)

for j = 1, 2, . . . , m, where

C1 =
1

∑m
j=1 1/j

. (1.29)

Figure 1.15 plots the number n of draws required to distinguish the actual distribution
defined in (1.28) and (1.29) from the model distribution defined in (1.26) and (1.27). (Re-
mark 1.5.1 above specifies what we mean by “distinguish.”) Figure 1.15 shows that the
classical χ2 statistic requires many times more draws than the root-mean-square, as the
number m of bins increases.
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Figure 1.16: Fifth example; see Subsection 1.5.1.5.

1.5.1.5 A final example with fully specified truncated power-laws

Let us next specify the model distribution to be

p
(j)
0 =

C2

j2
(1.30)

for j = 1, 2, . . . , m, where

C2 =
1

∑m
j=1 1/j

2
. (1.31)

We again consider n i.i.d. draws from the distribution

p(j) =
C1

j
(1.32)

for j = 1, 2, . . . , m, where

C1 =
1

∑m
j=1 1/j

. (1.33)

Figure 1.16 plots the number n of draws required to distinguish the actual distribution
defined in (1.32) and (1.33) from the model distribution defined in (1.30) and (1.31). (Re-
mark 1.5.1 above specifies what we mean by “distinguish.”) The root-mean-square is not
uniformly more powerful than the other statistics in this example; see Remark 1.5.3 at the
beginning of the present section.
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Figure 1.17: Sixth example; see Subsection 1.5.1.6.

1.5.1.6 Modified Poisson distributions

Let us specify the model distribution to be the (truncated) Poisson distribution

p
(j)
0 =

B3m/8

(
3m
8

)j−1

(j − 1)!
(1.34)

for j = 1, 2, . . . , m, where

B3m/8 =
1

∑m
j=1

(
3m
8

)j−1
/(j − 1)!

. (1.35)

We consider n i.i.d. draws from the distribution

p((3m/8)−1) = S/10, (1.36)

p(3m/8) = 4S/5, (1.37)

p((3m/8)+1) = S/10, (1.38)

S = p
((3m/8)−1)
0 + p

(3m/8)
0 + p

((3m/8)+1)
0 , (1.39)

p(j) = p
(j)
0 (1.40)

for the remaining values of j (for j = 1, 2, . . . , 3m
8
− 2 and j = 3m

8
+ 2, 3m

8
+ 3, . . . , m).

Figure 1.17 plots the number n of draws required to distinguish the actual distribution de-
fined in (1.36)–(1.40) from the model distribution defined in (1.34) and (1.35). (Remark 1.5.1
above specifies what we mean by “distinguish.”)
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Figure 1.18: Seventh example; see Subsection 1.5.1.7.

1.5.1.7 A truncated power-law and a truncated geometric distribution

Let us finally specify the model distribution to be

p
(j)
0 =

C1

j
(1.41)

for j = 1, 2, . . . , 100, where

C1 =
1

∑100
j=1 1/j

. (1.42)

We consider n i.i.d. draws from the (truncated) geometric distribution

p(j) = ct t
j (1.43)

for j = 1, 2, . . . , 100, where

ct =
1

∑100
j=1 t

j
; (1.44)

Figure 1.18 considers several values for t.
Figure 1.18 plots the number n of draws required to distinguish the actual distribu-

tion defined in (1.43) and (1.44) from the model distribution defined in (1.41) and (1.42).
(Remark 1.5.1 above specifies what we mean by “distinguish.”) See the next section, Sub-
section 1.5.2.1, for a similar example, this time involving parameter estimation.
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Figure 1.19: First example; see Subsection 1.5.2.1.

1.5.2 Examples with parameter estimation

1.5.2.1 A truncated power-law and a truncated geometric distribution

We turn now to models involving parameter estimation. Let us specify the model distribution
to be the Zipf distribution

p
(j)
0 (θ) =

Cθ

jθ
(1.45)

for j = 1, 2, . . . , 100, where

Cθ =
1

∑100
j=1 1/j

θ
; (1.46)

we estimate the parameter θ via maximum-likelihood methods. We consider n i.i.d. draws
from the (truncated) geometric distribution

p(j) = ct t
j (1.47)

for j = 1, 2, . . . , 100, where

ct =
1

∑100
j=1 t

j
; (1.48)

Figure 1.19 considers several values for t.
Figure 1.19 plots the number n of draws required to distinguish the actual distribution

defined in (1.47) and (1.48) from the model distribution defined in (1.45) and (1.46), estimat-
ing the parameter θ in (1.45) and (1.46) via maximum-likelihood methods. (Remark 1.5.1
above specifies what we mean by “distinguish.”)
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Figure 1.20: Second example; see Subsection 1.5.2.2.

1.5.2.2 A rebinned geometric distribution and a truncated power-law

Let us specify the model distribution to be

p
(j)
0 (θ) = θj−1(1− θ) (1.49)

for j = 1, 2, . . . , 99, and
p
(100)
0 (θ) = θ99; (1.50)

we estimate the parameter θ via maximum-likelihood methods. We consider n i.i.d. draws
from the Zipf distribution

p(j) =
Ct

jt
(1.51)

for j = 1, 2, . . . , 100, where

Ct =
1

∑100
j=1 1/j

t
; (1.52)

Figure 1.20 considers several values for t.
Figure 1.20 plots the number n of draws required to distinguish the actual distribution

defined in (1.51) and (1.52) from the model distribution defined in (1.49) and (1.50), estimat-
ing the parameter θ in (1.49) and (1.50) via maximum-likelihood methods. (Remark 1.5.1
above specifies what we mean by “distinguish.”)
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Figure 1.21: Third example; see Subsection 1.5.2.3.

1.5.2.3 Truncated shifted Poisson distributions

Let us specify the model distribution to be the (truncated) Poisson distribution

p
(j)
0 (θ) =

Bθ θ
j−1

(j − 1)!
(1.53)

for j = 1, 2, . . . , 21, where

Bθ =
1

∑21
j=1 θ

j−1/(j − 1)!
; (1.54)

we estimate the parameter θ via maximum-likelihood methods. We consider n i.i.d. draws
from the distribution

p(j) =
B̃t 5

j−1+t

(j − 1 + t)!
(1.55)

for j = 1, 2, . . . , 21, where

B̃t =
1

∑21
j=1 5

j−1+t/(j − 1 + t)!
; (1.56)

Figure 1.21 considers several values for t. Clearly, p(j) = p
(j)
0 (5) for j = 1, 2, . . . , 21, if t = 0.

Figure 1.21 plots the number n of draws required to distinguish the actual distribution
defined in (1.55) and (1.56) from the model distribution defined in (1.53) and (1.54), estimat-
ing the parameter θ in (1.53) and (1.54) via maximum-likelihood methods. (Remark 1.5.1
above specifies what we mean by “distinguish.”)
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Figure 1.22: Fourth example; see Subsection 1.5.2.4.

1.5.2.4 An example with a uniform tail

Let us specify the model distribution to be

p
(1)
0 (θ) = θ, (1.57)

p
(2)
0 (θ) = θ, (1.58)

p
(3)
0 (θ) =

1

2
− 2θ, (1.59)

p
(j)
0 (θ) =

1

2m− 6
(1.60)

for j = 4, 5, . . . , m; we estimate the parameter θ via maximum-likelihood methods. We
consider n i.i.d. draws from the distribution

p(1) =
1

4
, (1.61)

p(2) =
1

8
, (1.62)

p(3) =
1

8
, (1.63)

p(j) =
1

2m− 6
(1.64)

for j = 4, 5, . . . , m.
Figure 1.22 plots the number n of draws required to distinguish the actual distribution

defined in (1.61)–(1.64) from the model distribution defined in (1.57)–(1.60), estimating the
parameter θ in (1.57)–(1.60) via maximum-likelihood methods. (Remark 1.5.1 above specifies
what we mean by “distinguish.”)
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Figure 1.23: Fifth example; see Subsection 1.5.2.5.

1.5.2.5 A model with an integer-valued parameter

Let us specify the model distribution to be

p
(j)
0 (θ) =

1

2θ
(1.65)

for j = 1, 2, . . . , θ, and

p
(j)
0 (θ) =

1

2(m− θ)
(1.66)

for j = θ + 1, θ + 2, . . . , m; we estimate the parameter θ via maximum-likelihood methods.
We consider n i.i.d. draws from the distribution

p(1) =
1

4
, (1.67)

p(2) =
1

4
, (1.68)

p(3) =
1

4
, (1.69)

and

p(j) =
1

4m− 12
(1.70)

for j = 4, 5, . . . , m.
Figure 1.23 plots the number n of draws required to distinguish the actual distribution

defined in (1.67)–(1.70) from the model distribution defined in (1.65) and (1.66), estimating
the parameter θ in (1.65) and (1.66) via maximum-likelihood methods. (Remark 1.5.1 above
specifies what we mean by “distinguish.”)
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Figure 1.24: Sixth example; see Subsection 1.5.2.6.

1.5.2.6 Truncated power-laws parameterized with a permutation

Let us specify the model to be the Zipf distribution

p
(j)
0 (θ) =

C1

θ(j)
(1.71)

for j = 1, 2, . . . , m, where θ is a permutation of the integers 1, 2, . . . , m, and

C1 =
1

∑m
j=1 1/j

; (1.72)

we estimate the permutation θ via maximum-likelihood methods, that is, by sorting the
frequencies: first we choose j1 to be the number of a bin containing the greatest number of
draws among all m bins, then we choose j2 to be the number of a bin containing the greatest
number of draws among the remaining m− 1 bins, then we choose j3 to be the number of a
bin containing the greatest among the remaining m− 2 bins, and so on, and finally we find
θ such that θ(j1) = 1, θ(j2) = 2, . . . , θ(jm) = m.

We consider n i.i.d. draws from the distribution

p(j) =
C2

j2
(1.73)

for j = 1, 2, . . . , m, where

C2 =
1

∑m
j=1 1/j

2
. (1.74)

Figure 1.24 plots the number n of draws required to distinguish the actual distribution
defined in (1.73) and (1.74) from the model distribution defined in (1.71) and (1.72), es-
timating the parameter θ in (1.71) via maximum-likelihood methods (that is, by sorting).
(Remark 1.5.1 above specifies what we mean by “distinguish.”)
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Figure 1.25: Seventh example; see Subsection 1.5.2.7.

1.5.2.7 A model with two parameters

For the final example, let us specify the model distribution to be

p
(1)
0 (θ1, θ2) = θ1, (1.75)

p
(2)
0 (θ1, θ2) = θ1, (1.76)

p
(3)
0 (θ1, θ2) = θ2, (1.77)

p
(4)
0 (θ1, θ2) = θ2, (1.78)

and

p
(j)
0 (θ1, θ2) =

1− 2θ1 − 2θ2
m− 4

(1.79)

for j = 5, 6, . . . , m; we estimate the parameters θ1 and θ2 via maximum-likelihood methods.
We consider n i.i.d. draws from the distribution

p(1) =
9

32
, (1.80)

p(2) =
3

32
, (1.81)

p(3) =
3

32
, (1.82)

p(4) =
1

32
, (1.83)
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Figure 1.26: First example, with m = 100 draws; see Subsection 1.5.1.1.

and

p(j) =
1

2m− 8
(1.84)

for j = 5, 6, . . . , m.
Figure 1.25 plots the number n of draws required to distinguish the actual distribution

defined in (1.80)–(1.84) from the model distribution defined in (1.75)–(1.79), estimating the
parameters θ1 and θ2 in (1.75)–(1.79) via maximum-likelihood methods. (Remark 1.5.1 above
specifies what we mean by “distinguish.”)

1.6 Additional plots of power and efficiency

For each plot in Section 1.5, the present section provides a corresponding plot based on a
confidence level of 95% (that is, a significance level of 5%), rather than a confidence level of
99% (that is, a significance level of 1%). In this section, Figures 1.27–1.40 set the probabilities
of false positives and false negatives both to be 5% in order to determine the required number
n of draws, whereas in Section 1.5 above Figures 1.12–1.25 set the probabilities of false
positives and false negatives both to be 1% (see Remark 1.5.1). Similarly, a rejection is
deemed successful for Figure 1.26 at the 5% significance level (or better), whereas a rejection
is deemed successful for Figure 1.11 only at the stricter 1% significance level (or better).
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Figure 1.27: First example (statistical “efficiency”); see Subsection 1.5.1.1.
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Figure 1.28: Second example; see Subsection 1.5.1.2.
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Figure 1.29: Third example; see Subsection 1.5.1.3.
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Figure 1.30: Fourth example; see Subsection 1.5.1.4.
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Figure 1.31: Fifth example; see Subsection 1.5.1.5.
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Figure 1.32: Sixth example; see Subsection 1.5.1.6.
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Figure 1.33: Seventh example; see Subsection 1.5.1.7.
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Figure 1.34: First example; see Subsection 1.5.2.1.
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Figure 1.35: Second example; see Subsection 1.5.2.2.
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Figure 1.36: Third example; see Subsection 1.5.2.3.
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Figure 1.37: Fourth example; see Subsection 1.5.2.4.
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Figure 1.38: Fifth example; see Subsection 1.5.2.5.
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Figure 1.39: Sixth example; see Subsection 1.5.2.6.
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Figure 1.40: Seventh example; see Subsection 1.5.2.7.



Chapter 2

Nominal versus ordinal

Goodness-of-fit tests gauge whether a given set of observations is consistent (up to expected
random fluctuations) with arising as independent and identically distributed (i.i.d.) draws
from a user-specified probability distribution known as the “model.” The standard gauges
involve the discrepancy between the model and the empirical distribution of the observed
draws. Some measures of discrepancy are cumulative; others are not. The most popular
cumulative measure is the Kolmogorov-Smirnov statistic; when all probability distributions
under consideration are discrete, a natural noncumulative measure is the root-mean-square
distance between the model and the empirical distributions. In the present chapter, both
mathematical analysis and its illustration via various data sets indicate that the Kolmogorov-
Smirnov statistic tends to be more powerful than the root-mean-square distance when there
is a natural ordering for the values that the draws can take — that is, when the data is ordinal
— whereas the root-mean-square distance is more reliable and more easily understood than
the Kolmogorov-Smirnov statistic when there is no natural ordering (or partial order) —
that is, when the data is nominal.

2.1 Recap

Testing goodness-of-fit is one of the foundations of modern statistics, as elaborated in Chap-
ter 1 and by Rao (2002), for example. The formulation in the discrete setting involves
distributions over m bins (“categories,” “cells,” and “classes” are common synonyms for
“bins”). In accordance with the standard conventions, we will use p0 to denote a user-

specified distribution, usually called the “model,” with p0 = (p
(1)
0 , p

(2)
0 , . . . , p

(m)
0 ), such that

p
(1)
0 , p

(2)
0 , . . . , p

(m)
0 are nonnegative and

m∑

j=1

p
(j)
0 = 1. (2.1)

A goodness-of-fit test produces a value — the “P-value” — that gauges the consistency of
n observations with arising as independent and identically distributed (i.i.d.) draws from
p0. In many formulations, the user-specified model p0 consists of a family of probability
distributions parameterized by θ, where θ can be integer-valued, real-valued, complex-valued,

49
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vector-valued, matrix-valued, or any combination of the many possibilities. In such cases,
the P-value gauges the consistency of the observed data with arising as i.i.d. draws from
p0(θ̂), where θ̂ is an estimate (taken to be the maximum-likelihood estimate throughout the
present chapter). We now review the definition of P-values.

P-values are defined via the empirical distribution p̂, where p̂ = (p̂(1), p̂(2), . . . , p̂(m)), with
p̂(j) being the proportion of the n observed draws that fall in the jth bin, that is, p̂(j) is
the number of draws falling in the jth bin, divided by n. P-values involve a hypothetical
experiment taking n i.i.d. draws from the assumed actual underlying distribution p0(θ̂). We
denote by P̂ the empirical distribution of the draws from the hypothetical experiment; we
denote by Θ̂ a maximum-likelihood estimate of θ obtained from the hypothetical experiment.
The P-value is then the probability that the discrepancy between the random variables P̂
and p0(Θ̂) is at least as large as the observed discrepancy between p̂ and p0(θ̂), calculating
the probability under the assumption that the hypothetical observations arise as i.i.d. draws
from p0(θ̂).

2.2 Definitions of the divergences

To complete the definition of P-values, we must choose a measure of discrepancy. In the
present chapter, we consider the (discrete) Kolmogorov-Smirnov and root-mean-square dis-
tances,

d1(a, b) = max
1≤k≤m

∣
∣
∣
∣
∣

k∑

j=1

a(j) −
k∑

j=1

b(j)

∣
∣
∣
∣
∣

(2.2)

and

d2(a, b) =

√
√
√
√

m∑

j=1

(a(j) − b(j))2/m, (2.3)

respectively. The P-value for the Kolmogorov-Smirnov statistic is the probability that
d1(P̂, p0(Θ̂)) ≥ d1(p̂, p0(θ̂)); the P-value for the root-mean-square is the probability that
d2(P̂, p0(Θ̂)) ≥ d2(p̂, p0(θ̂)). When evaluating the probabilities, we view P̂ and Θ̂ as random
variables, constructed with i.i.d. draws from the assumed distribution p0(θ̂), while viewing
the observed p̂ and θ̂ as fixed, not random.

If a P-value is very small, then we can be confident that the given observed draws are
inconsistent with the assumed model, are not i.i.d., or are both inconsistent and not i.i.d.

Needless to say, the Kolmogorov-Smirnov distance defined in (2.2) is the maximum abso-
lute difference between cumulative distribution functions. The Kolmogorov-Smirnov statistic
depends on the ordering of the bins, unlike the root-mean-square distance.

As supported by the investigations below, we recommend using the Kolmogorov-Smirnov
statistic when there is a natural ordering of the bins, while the root-mean-square distance
is more reliable and more easily understood than the Kolmogorov-Smirnov statistic when
there is no natural ordering (or partial order). Unlike the root-mean-square distance, the
Kolmogorov-Smirnov statistic utilizes the information in a natural ordering of the bins, when
the latter is available. Horn (1977) gave similar recommendations when comparing the χ2
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and Kolmogorov-Smirnov statistics. Detailed comparisons between the root-mean-square
distance and χ2 statistics are available in Chapter 1.

The Kolmogorov-Smirnov statistic is cumulative; it accentuates low-frequency differences
between the model and the empirical distribution of the draws, but tends to average away and
otherwise obscure high-frequency differences. Similar observations have been made by Pet-
titt and Stephens (1977), D’Agostino and Stephens (1986), Choulakian et al. (1994), From
(1996), Best and Rayner (1997), Haschenburger and Spinelli (2005), Steele and Chaseling
(2006), Lockhart et al. (2007), Ampadu (2008), and Ampadu et al. (2009), among others.
Our suggestions appear to be closest to those of Horn (1977).

There are many cumulative approaches similar to the Kolmogorov-Smirnov statistic.
These include the Cramér–von-Mises, Watson, Kuiper, and Rényi statistics, as well as their
Anderson-Darling variants; Section 14.3.4 of Press et al. (2007), Stephens (1970), and Rényi
(1953) review these statistics. We ourselves are fond of the Kuiper approach. However,
the present chapter focuses on the popular Kolmogorov-Smirnov statistic; the Cramér–von-
Mises, Watson, and Kuiper variants are very similar.

Please note that multidimensional problems deserve special methods; see, for example,
Section 14.8 (“Do two-dimensional distributions differ?”) of Press et al. (2007). Alan Sokal,
Salil Vadhan, and others have pointed out to us that the earth-mover distance (also known
as the Wasserstein, Monge-Kantorovich, Mallows, Kantorovich-Rubinstein, or Hutchinson
distance) is natural for many application domains, including image analysis; see, for example,
the recent work by del Barrio et al. (2000) and Munk and Czado (1998).

The remainder of the present chapter has the following structure: Section 2.3 describes
how the root-mean-square is generally preferable to the Kolmogorov-Smirnov statistic when
there is no natural ordering (or partial order) of the bins. Section 2.4 describes how the
Kolmogorov-Smirnov statistic is generally preferable to the root-mean-square distance when
there is a natural ordering of the bins. Section 2.5 illustrates both cases with examples of
data sets and the associated P-values, computing the P-values via Monte-Carlo simulations
with guaranteed error bounds. The reader may wish to begin with Section 2.5, referring
back to earlier sections as needed.

2.3 The case when the bins do not have a natural order

The root-mean-square distance is generally preferable to the Kolmogorov-Smirnov statistic
when there is no natural ordering (or partial order) of the bins. As discussed in Chapter 7, the
interaction of parameter estimation and the root-mean-square distance is easy to understand
and quantify, at least asymptotically, in the limit of large numbers of draws. In contrast,
the interaction of parameter estimation and the Kolmogorov-Smirnov statistic can be very
complicated, though Choulakian et al. (1994) and Lockhart et al. (2007) have pointed out
that the interaction is somewhat simpler with Cramér’s and von Mises’, Watson’s, and
some of Anderson’s and Darling’s very similar statistics. That said, the root-mean-square
distance can be more reliable even when there are no parameters in the model, that is, when
the model p0 is a single, fixed, fully specified probability distribution; the remainder of the
present section describes why.

The basis of the analysis is the following lemma, a reformulation of the fact that the
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expected maximum absolute deviation from zero of the standard Brownian bridge is
√

π/2 ·
ln(2) ≈ .8687 (see, for example, Section 3 of Marsaglia et al., 2003).

Lemma 2.3.1. Suppose that m is even and that D(1), D(2), . . . , D(m) form a randomly
ordered list of m/2 positive ones and m/2 negative ones (with the ordering drawn uniformly
at random). Then,

E max
1≤k≤m

∣
∣
∣
∣
∣

k∑

j=1

D(j)

∣
∣
∣
∣
∣

/

√
m −→

√

π/2 · ln(2) (2.4)

in the limit that m → ∞, where (as usual) E produces the expected value.

We will assume that the given observations arise as i.i.d. draws from an (unknown) actual
underlying probability distribution denoted p. We denote by p0 the model distribution. We
denote by P̂ the empirical distribution of the n draws. These are all probability distributions,
that is, p(j) ≥ 0, p

(j)
0 ≥ 0, and P̂ (j) ≥ 0 for j = 1, 2, . . . , m, and (2.1) and its analogues for

p and P̂ hold.
Suppose that the actual underlying distribution p(1), p(2), . . . , p(m) of the draws is the

same as the model distribution p
(1)
0 , p

(2)
0 , . . . , p

(m)
0 ; the random variables P̂ (1), P̂ (2), . . . , P̂ (m)

are then the proportions of n i.i.d. draws from p0 that fall in the respective m bins. The
root-sum-square distance is

U =

√
√
√
√

m∑

j=1

(P̂ (j) − p
(j)
0 )2. (2.5)

The Kolmogorov-Smirnov statistic is

V = max
1≤k≤m

∣
∣
∣
∣
∣

k∑

j=1

(P̂ (j) − p
(j)
0 )

∣
∣
∣
∣
∣
. (2.6)

The expected value of the square of the root-sum-square distance is

EU2 =

m∑

j=1

E (P̂ (j) − p
(j)
0 )2 =

m∑

j=1

p
(j)
0

n
=

1

n
. (2.7)

As shown, for example, by Durbin (1972) using Lemma 2.3.1 above, the expected value of√
n times the Kolmogorov-Smirnov statistic is

EV
√
n →

√

π/2 · ln(2) ≈ .8687 (2.8)

in the limit that n → ∞ and max1≤j≤m p
(j)
0 → 0. Comparing (2.7) and (2.8), we see that U

and V are roughly the same size (inversely proportional to
√
n) when the actual underlying

distribution of the draws is the same as the model distribution.
However, when the actual underlying distribution of the draws differs from the model

distribution, the root-sum-square distance and the Kolmogorov-Smirnov statistic can be very
different. If the number n of draws is large, then the empirical distribution P̂ will be very
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close to the actual distribution p. Therefore, to study the performance of the goodness-of-fit
statistics as n → ∞ when the actual distribution p differs from the model distribution p0
(and both are independent of n), we can focus on the difference between p and p0 (rather
than the difference between P̂ and p0). We now define and study the difference

d(j) = p(j) − p
(j)
0 (2.9)

for j = 1, 2, . . . , m. The root-sum-square distance between p and p0 is

u =

√
√
√
√

m∑

j=1

(d(j))2. (2.10)

The Kolmogorov-Smirnov statistic (the maximum absolute cumulative difference) is

v = max
1≤k≤m

∣
∣
∣
∣
∣

k∑

j=1

d(j)

∣
∣
∣
∣
∣
. (2.11)

For simplicity (and because the following analysis generalizes straightforwardly), let us
consider the illustrative case in which |d(1)| = |d(2)| = · · · = |d(m)|, that is,

|d(j)| = cm (2.12)

for all j = 1, 2, . . . , m, where cm is a positive real number (cm must always satisfy m ·cm ≤ 2,

since m · cm =
∑m

j=1 cm =
∑m

j=1 |d(j)| ≤
∑m

j=1[p
(j) + p

(j)
0 ] = 2). Combining (2.9), (2.1) and

its analogue for p yields that
m∑

j=1

d(j) = 0. (2.13)

Together, (2.13) and (2.12) imply that m is even and that half of d(1), d(2), . . . , d(m) are
equal to +cm, and the other half are equal to −cm.

Combining (2.12) and (2.10) yields that the root-sum-square distance is

u =
√
m · cm. (2.14)

The fact that half of d(1), d(2), . . . , d(m) are equal to +cm, and the other half are equal to
−cm, yields that the Kolmogorov-Smirnov statistic v defined in (2.11) could be as small as
cm or as large as m · cm/2, depending on the ordering of the signs in d(1), d(2), . . . , d(m). If all
orderings are equally likely (which is equivalent to ordering the bins uniformly at random),
then by Lemma 2.3.1 the mean value for v is

√

mπ/2 · ln(2) ·cm ≈ √
m · .8687 ·cm in the limit

that m is large (this is the expected maximum absolute deviation from zero of a tied-down
random walk with m steps, each of length cm, that starts and ends at zero; the random walk
ends at zero due to (2.13)).

Thus, in the limit that the number n of draws is large (and max1≤j≤m p
(j)
0 → 0, while both

the model p0 and the alternative distribution p are independent of n), the root-mean-square
distance and the Kolmogorov-Smirnov statistic have similar statistical power on average, if
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all orderings of the bins are equally likely. However, the root-mean-square distance is the
same for any ordering of the bins, whereas the power of the Kolmogorov-Smirnov statistic
depends strongly on the ordering. We see, then, that the root-mean-square distance is more
reliable than the Kolmogorov-Smirnov statistic when there is no especially natural ordering
for the bins.

Remark 2.3.2. It is possible to use an ordering for which the Kolmogorov-Smirnov statistic
attains its greatest value (this corresponds to renumbering the bins such that the differences

D(j) = P̂ (j) − p
(j)
0 satisfy D(1) ≥ D(2) ≥ · · · ≥ D(m) or D(1) ≤ D(2) ≤ · · · ≤ D(m)). However,

this data-dependent ordering produces a statistic which is proportional to the l1 distance
∑m

j=1 |D(j)| (whereas the root-sum-square distance is the l2 distance), as remarked at the
top of page 396 of Hoeffding (1965). This distance is not so obviously cumulative.

2.4 The case when the bins have a natural order

The Kolmogorov-Smirnov statistic is often preferable to the root-mean-square distance when
there is a natural ordering of the bins. In fact, the Kolmogorov-Smirnov statistic is always
preferable when the data is very sparse and there is a natural ordering of the bins. In the limit
that the maximum expected number of draws per bin tends to zero, the root-mean-square
distance always takes the same value under the null hypothesis, providing no discriminative
power: indeed, when the draws producing the empirical distribution P̂ are taken i.i.d. from
the model distribution p0, the root-mean-square distance is almost surely 1/

√
mn,

√
√
√
√

m∑

j=1

(P̂ (j) − p
(j)
0 )2/m =

1√
mn

, (2.15)

in the limit that n ·max1≤j≤m p
(j)
0 → 0 (the reason is that, in this limit, max1≤j≤m p

(j)
0 → 0

and moreover almost every realization of the experiment satisfies that, for all j = 1, 2,
. . . , m, P̂ (j) = 0 or P̂ (j) = 1/n, that is, there is at most one observed draw per bin). In
contrast, the Kolmogorov-Smirnov statistic is nontrivial even in the limit that the maximum
expected number of draws per bin tends to zero — in fact, this is exactly the continuum limit
for the original Kolmogorov-Smirnov statistic involving continuous cumulative distribution
functions (as opposed to the discontinuous cumulative distribution functions arising from
the discrete distributions considered in the present chapter). Furthermore, the Kolmogorov-
Smirnov statistic is sensitive to symmetry (or asymmetry) in a distribution, and can detect
other interesting properties of distributions that depend on the ordering of the bins.

2.5 Data analysis

This section gives four examples illustrating the performance of the Kolmogorov-Smirnov
statistic and the root-mean-square distance in various circumstances. The Kolmogorov-
Smirnov statistic is more powerful than the root-mean-square distance in the first two ex-
amples, for which there are natural orderings of the bins. The root-mean-square distance is
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more reliable than the Kolmogorov-Smirnov statistic in the last two examples, for which any
ordering of the bins is necessarily rather arbitrary. We computed all P-values via Monte-
Carlo simulations with guaranteed error bounds, as in Section 1.3. Remark 1.3.2 proves that
the standard error of the obtained estimate for a P-value P is

√

P (1− P )/ℓ, where ℓ is the
number of simulations conducted to calculate the P-value.

2.5.1 A test of randomness

A particular random number generator is supposed to produce an integer from 1 to 232

uniformly at random. The model distribution for such a generator is

p
(j)
0 = 2−32 (2.16)

for j = 1, 2, . . . , 232. We test the (obviously poor) generator which produces the numbers
1, 2, 3, . . . , n, in that order, so that the observed distribution of the generated numbers is

p̂(j) =

{
1/n, j = 1, 2, . . . , n

0, j = n+ 1, n + 2, . . . , 232
(2.17)

for j = 1, 2, . . . , 232. For this data, the P-value for the root-mean-square is 1 to several digits
of precision, while the P-value for the Kolmogorov-Smirnov statistic is 0 to several digits,
at least for n between a hundred and a million. So, as expected, the root-mean-square
has almost no discriminative power for such sparse data, whereas the Kolmogorov-Smirnov
statistic easily discerns that the data (2.17) is inconsistent with the model (2.16).

Remark 2.5.1. Like the root-mean-square distance, classical goodness-of-fit statistics such
as χ2, G2 (the log–likelihood-ratio), and the Freeman-Tukey/Hellinger distance are invariant
to the ordering of the bins, and also produce P-values that are equal to 1 to several digits
of precision, at least for n between a hundred and a million. For definitions and further
discussion of the χ2, G2, and Freeman-Tukey statistics, see Section 1.2.

2.5.2 A test of Poissonity

A Poisson-distributed random number generator with mean 100 is supposed to produce a
nonnegative integer according to the model

p
(j)
0 =

100j

j! · exp(100) (2.18)

for j = 0, 1, 2, 3, . . . . We test the (obviously poor) generator which produces the numbers
100, 101, 102, . . . , 109, so that the observed distribution of the numbers is

p̂(j) =

{
1/10, j = 100, 101, 102, . . . , 109

0, otherwise
(2.19)

for j = 0, 1, 2, 3, . . . . The P-values, each computed via 4,000,000 simulations, are

• Kolmogorov-Smirnov: .0075
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• root-mean-square distance: .998

• χ2: .999

• G2 (the log–likelihood-ratio): .999

• Freeman-Tukey (the Hellinger distance): .998

For definitions and further discussion of the χ2, G2, and Freeman-Tukey statistics, see Sec-
tion 1.2. The Kolmogorov-Smirnov statistic is far more powerful for this example, in which
the bins have a natural ordering (in this example the bins are the nonnegative integers).

Figure 2.1 plots the model probabilities p
(0)
0 , p

(1)
0 , p

(2)
0 , . . . defined in (2.18) along with

the observed proportions p̂(0), p̂(1), p̂(2), . . . defined in (2.19). Figure 2.2 plots the model

probabilities p
(0)
0 , p

(1)
0 , p

(2)
0 , . . . along with analogues of the proportions p̂(0), p̂(1), p̂(2), . . . for

a simulation generating 10 i.i.d. draws according to the model.
Figure 2.3 plots the cumulative model probabilities p

(0)
0 , p

(0)
0 + p

(1)
0 , p

(0)
0 + p

(1)
0 + p

(2)
0 ,

. . . along with the cumulative observed proportions p̂(0), p̂(0) + p̂(1), p̂(0) + p̂(1) + p̂(2), . . . .
Figure 2.4 plots the cumulative model probabilities p

(0)
0 , p

(0)
0 + p

(1)
0 , p

(0)
0 + p

(1)
0 + p

(2)
0 , . . .

along with analogues of the cumulative proportions p̂(0), p̂(0) + p̂(1), p̂(0) + p̂(1) + p̂(2), . . .
for the simulation generating 10 i.i.d. draws according to the model.

2.5.3 A test of Hardy-Weinberg equilibrium

In a population with suitably random mating, the proportions of pairs of Rhesus haplotypes
in members of the population (each member has one pair) can be expected to follow the
Hardy-Weinberg law discussed by Guo and Thompson (1992), namely to arise via random
sampling from the model

p
(j,k)
0 (θ1, θ2, . . . , θ9) =

{
2 · θj · θk, j > k
(θk)

2, j = k
(2.20)

for j, k = 1, 2, . . . , 9 with j ≥ k, under the constraint that

9∑

j=1

θj = 1, (2.21)

where the parameters θ1, θ2, . . . , θ9 are the proportions of the nine Rhesus haplotypes in
the population (naturally, their maximum-likelihood estimates are the proportions of the

haplotypes in the given data). For j, k = 1, 2, . . . , 9 with j ≥ k, therefore, p
(j,k)
0 is the

expected probability that the pair of haplotypes in the genome of an individual is the pair
j and k, given the parameters θ1, θ2, . . . , θ9.

In this formulation, the hypothesis of suitably random mating entails that the members
of the sample population are i.i.d. draws from the model specified in (2.20); if a goodness-
of-fit statistic rejects the model with high confidence, then we can be confident that mating
has not been suitably random.
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Figure 2.1: Proportions associated with the bins for the observations
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Figure 2.2: Proportions associated with the bins for a simulation
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Figure 2.3: Cumulative proportions associated with the bins for the observations
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Table 2.1 provides data on n = 8297 individuals; we duplicated Figure 3 of Guo and
Thompson (1992) to obtain Table 2.1. Figure 2.5 plots the associated P-values, each com-
puted via 90,000 Monte-Carlo simulations. The Kolmogorov-Smirnov statistic depends on
the ordering of the bins; for the first trial t = 1 in Figure 2.5, the order of the bins is the
lexicographical ordering, namely (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), . . . , (9, 9). The nine
trials t = 2, 3, . . . , 10 displayed in Figure 2.5 use pseudorandom orderings of the bins. Please
note that the root-mean-square distance does not depend on the ordering.

Generally, a more powerful statistic produces lower P-values. In Figure 2.5, the P-values
for the Kolmogorov-Smirnov statistic are sometimes lower, sometimes higher than the P-
values for the root-mean-square distance. There is no particularly natural ordering of the
bins for Figure 2.5; Figure 2.5 displays 10 different orderings corresponding to 10 different
trials. Figure 2.5 demonstrates that the root-mean-square distance is more reliable than the
Kolmogorov-Smirnov statistic when there is no natural ordering (or partial order) for the
bins.

Remark 2.5.2. The P-values for classical goodness-of-fit statistics are substantially higher;
the classical statistics are less powerful for this example. The P-values, each computed via
4,000,000 Monte-Carlo simulations, are

• root-mean-square distance: .039

• χ2: .693

• G2 (the log–likelihood-ratio): .600

• Freeman-Tukey (the Hellinger distance): .562

For definitions and further discussion of the χ2, G2, and Freeman-Tukey statistics, see Sec-
tion 1.2. Like the root-mean-square distance, the χ2, G2, and Freeman-Tukey statistics are
all invariant to the ordering of the bins.

2.5.4 A test of uniformity

Table 2.2 duplicates Table 1 of Gilchrist (2010), giving the colors of the n = 62 pieces of
candy in a 2.17 ounce bag. Figure 2.6 plots the P-values for Table 2.2 to be consistent
up to expected random fluctuations with Table 2.3, the model of uniform proportions. We
computed each P-value via 4,000,000 Monte-Carlo simulations. The Kolmogorov-Smirnov
statistic depends on the ordering of the bins; the ten trials t = 1, 2, . . . , 10 displayed in
Figure 2.6 use pseudorandom orderings of the bins. The root-mean-square distance does not
depend on the ordering.

Generally, a more powerful statistic produces lower P-values. In Figure 2.6, the P-values
for the Kolmogorov-Smirnov statistic are sometimes lower, sometimes higher than the P-
values for the root-mean-square distance. There is no particularly natural ordering of the
bins for Table 2.3; Figure 2.6 displays 10 different pseudorandom orderings corresponding to
10 different trials. Figure 2.6 illustrates that the root-mean-square distance is more reliable
than the Kolmogorov-Smirnov statistic when there is no natural ordering (or partial order)
for the bins.
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Table 2.1: Frequencies of pairs of Rhesus haplotypes

k

j

j�
k 1 2 3 4 5 6 7 8 9

1 1236
2 120 3
3 18 0 0
4 982 55 7 249
5 32 1 0 12 0
6 2582 132 20 1162 29 1312
7 6 0 0 4 0 4 0
8 2 0 0 0 0 0 0 0
9 115 5 2 53 1 149 0 0 4
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Figure 2.5: P-values for Table 2.1 to be consistent with formula (2.20)
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Table 2.2: Observed frequencies of colors of candies in a 2.17 ounce bag

color red orange yellow green violet
number 15 9 14 11 13

Table 2.3: Expected frequencies of colors of candies in a 2.17 ounce bag

color red orange yellow green violet
number 12.4 12.4 12.4 12.4 12.4

0.00

0.20

0.40

0.60

0.80

1.00

 1  2  3  4  5  6  7  8  9  10

P
-v

al
ue

t

Kolmogorov-Smirnov

root-mean-square

Figure 2.6: P-values for Table 2.2 to be consistent with the model displayed in Table 2.3
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Remark 2.5.3. Table 2.2 provides a possible means for ordering the bins. However, such an
ordering will depend on the observed data. Using a data-dependent ordering can profoundly
alter the nature of the goodness-of-fit statistic; see Remark 2.3.2.

Remark 2.5.4. Like the root-mean-square distance, many classical goodness-of-fit statistics
are invariant to the ordering of the bins. The following are P-values, each computed via
4,000,000 Monte-Carlo simulations:

• root-mean-square distance: .770

• χ2: .770

• G2 (the log–likelihood-ratio): .766

• Freeman-Tukey (the Hellinger distance): .755

For definitions and further discussion of the χ2, G2, and Freeman-Tukey statistics, see Sec-
tion 1.2. For this example, the root-mean-square distance and the χ2 statistic produce exactly
the same P-values: for the model of homogeneous proportions, displayed in Table 2.3, the
root-mean-square distance is directly proportional to the square root of the χ2 statistic, and
hence the root-mean-square distance is a strictly increasing function of χ2.



Chapter 3

Hardy-Weinberg proportions

Compared with classical statistics for detecting deviations from Hardy-Weinberg equilibrium,
the root-mean-square discrepancy can be significantly more powerful. Unlike χ2, the log–
likelihood-ratio, and Fisher’s exact tests, which are sensitive to relative discrepancies between
genotypic frequencies, the root-mean-square is sensitive to absolute discrepancies. This can
increase statistical power, as illustrated in the present chapter both through asymptotic
analysis and for benchmark datasets.

3.1 Introduction

Hardy (1908) and Weinberg (1908) independently derived equations corroborating the theory
of Mendelian inheritance, proving that in a large population of randomly mating individuals,
the proportions of alleles and genotypes at a locus stay unchanged in the absence of specific
disturbing influences. Today, Hardy-Weinberg equilibrium (HWE) is a common hypothesis
used in scientific domains ranging from botany (for example, by Weising (2005)) to genetic
epidemiology (for example, by Sham (2001) and Khoury et al. (2004)). Statistical tests of
deviation from HWE are fundamental for validating the hypothesis of HWE. Traditionally,
χ2 or an asymptotically equivalent variant such as the log–likelihood-ratio was used for this
assessment. Before computers became readily available, the asymptotic χ2 approximation for
the statistics used in these tests was critical. However, with the now widespread availability
of computers, exact tests can be computed effortlessly, opening the door to more powerful
goodness-of-fit tests.

The seminal paper of Guo and Thompson (1992) campaigned for an exact test of HWE
based on the likelihood function. While their work renewed interest in conditional exact tests
for Hardy-Weinberg equilibrium, including contributions by Raymond and Rousset (1995),
Diaconis and Sturmfels (1998), and Wigginton et al. (2005), likelihood-based tests have also
been subject to criticism, and there is little evidence that such tests are more powerful
than other exact tests, such as those based on likelihood ratios (as highlighted, for example,
by Engels (2009)) or those based on the root-mean-square.

As discussed below, the classical datasets from Guo and Thompson (1992) indicate that
goodness-of-fit tests based on the root-mean-square distance can be more powerful than
classical tests at detecting deviations from Hardy-Weinberg equilibrium, sometimes by an

63
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order of magnitude. In particular, at the 5% significance level, the root-mean-square test
rejects the hypothesis of HWE for the dataset in Example 1 of this chapter while the classic
tests do not, and at the 1% significance level rejects the hypothesis of HWE for the dataset
in Example 2 while the classic tests do not.

These results are not a chance anomaly. Upon further analysis of the datasets, we find
that the classical tests, tuned to detect relative discrepancies, can be blind to overwhelmingly
large discrepancies among common genotypes that get drowned out by expected statistical
fluctuations in rare genotypes. The root-mean-square, on the other hand, detects deviations
in absolute discrepancies, and easily detects large discrepancies in common genotypes.

To make these observations precise, we show that, in the asymptotic limit for which
the number of draws and number of alleles tend to infinity together, the root-mean-square
statistic has asymptotic power one while the classic statistics have asymptotic power zero
against a family of alternatives involving one common allele, several rare alleles, and an
excess of observed common genotypes. We observe numerically that this asymptotic limit is
reached very quickly, on datasets involving no more than 10 alleles and 30 draws. Chapters 1
and 8 discuss the classical asymptotic limit, for which the number of draws tends to infinity
but the number of alleles remains fixed; as shown in Chapters 1 and 8, the root-mean-square
statistic is often more powerful in this asymptotic limit as well as others.

None of the statistics we consider produces a test that is uniformly more powerful than
any other, but while each statistic focuses power on its own class of alternatives, the root-
mean-square statistic is more relevant for many deviations of interest in practice. At the
very least, the root-mean-square and the classical statistics focus on complementary classes
of alternatives, and their combined P-values provide more information than the individual
P-values.

The results of our analysis are consistent with the numerous experiments reported in
Chapter 1, which exhibit the often greater power of the root-mean-square in detecting mean-
ingful discrepancies for nonuniform model distributions. Chapter 4 provides several examples
for which the root-mean-square is more powerful than the classical statistics when testing
for homogeneity in contingency tables. We should remark that the root-mean-square can be
interpreted as an analog for nominal data of the discrete Kolmogorov-Smirnov statistic; see
Chapter 2, for example.

The rest of the present chapter has the following structure: Section 3.2 recalls the set-up
and motivation for testing Hardy-Weinberg equilibrium. Section 3.3 defines the relevant test
statistics. Section 3.4 compares the performance of these statistics on the classic datasets
from Guo and Thompson (1992). Section 3.5 numerically evaluates their statistical power
and size for several datasets with prescribed deviations from HWE. Section 3.6 provides an
asymptotic analysis of the various statistics to highlight the limited power of the classical
statistics relative to the root-mean-square statistic in distinguishing important classes of
deviations from Hardy-Weinberg equilibrium. Section 3.7 provides concluding remarks.

3.2 Set-up and motivation

Recall that a “gene” refers to a segment of DNA at a particular location (“locus”) on a
chromosome. The gene may assume one of several discrete variations, and these variants are
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known as “alleles.” An individual carries two alleles for each autosomal gene — one allele
selected at random from the mother’s pair of alleles, and one allele selected at random from
the father’s pair of alleles. These two alleles, considered as an unordered pair, constitute
the individual’s genotype. A gene having r alleles A1,A2, . . . ,Ar has r(r + 1)/2 possible
genotypes; these genotypes are naturally indexed over a lower-triangular array such as those
displayed in Figure 3.1.

A population is said to be in Hardy-Weinberg equilibrium (HWE) with respect to a
given system of alleles if the proportion of individuals in the population with two distinct
alleles is twice the product of the allele proportions, and the proportion of individuals in the
population with two copies of the same allele is the square of that allele’s proportion in the
population. That is, if pj,k is the proportion of genotype {Aj,Ak} in the population, and if
θk is the proportion of allele Ak in the population, then the system is in equilibrium if

pj,k = pj,k(θj , θk) =

{
2 · θj · θk, j > k
(θk)

2, j = k
(3.1)

for all integers j and k such that 1 ≤ k ≤ j ≤ r. A large population of genotypes that is
in Hardy-Weinberg equilibrium will remain in Hardy-Weinberg equilibrium, assuming that
mating is random and that there are no disturbing forces — no selection, no mutation, no
migration, and so on. Also, Hardy-Weinberg equilibrium is “neutral”: if any assumptions are
violated in a particular generation, perturbing the population, then in the next generation the
population will be in a new equilibrium (assuming the assumptions are back in effect), with
the new equilibrium specified by the new allele proportions. Hardy-Weinberg equilibrium is
thus a robust and reliable certificate that a population is not evolving with respect to the
gene of interest, and the detection of deviations from Hardy-Weinberg equilibrium is crucial
in many genetic analyses.

3.3 Testing for deviations

In practice, genotyping all individuals in a population is not usually feasible, and inference
about the distribution of genotypes in the population must be based on random sampling.
If a population of genotypes {Aj ,Ak} with underlying genotypic proportions (pj,k) is large
enough, a random sample of n genotypes X1, X2, . . . , Xn from the population can be
regarded as a sequence of independent and identically distributed draws from the multinomial
distribution specified by probabilities

Prob
{

Xi = {Aj,Ak}
}

= pj,k (3.2)

for i = 1, 2, . . . , n and for all integers j and k such that 1 ≤ k ≤ j ≤ r. If genotype {Aj ,Ak}
is observed nj,k times in the sample of n genotypes, then the number nj of instances of allele
Aj among the 2n observed alleles is

nj =

j
∑

k=1

nj,k +
r∑

k=j

nk,j (3.3)
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for j = 1, 2, . . . , r. In order to gauge the consistency of the sample counts (nj,k) with
Hardy-Weinberg equilibrium, we must first specify the r− 1 free parameters θ1, θ2, . . . , θr−1

corresponding to the underlying allele proportions in the HWE model (3.1). Intuitively, the
observed proportions of alleles, n1/(2n), n2/(2n), . . . , nr−1/(2n), are the best estimates for
θ1, θ2, . . . , θr−1; indeed, it is not difficult to verify that the observed proportions of alleles
are the maximum-likelihood estimates for the underlying parameters θ1, θ2, . . . , θr−1 in the
family of HWE equilibrium equations (3.1). These parameter specifications give rise to the
model counts of genotypes under Hardy-Weinberg equilibrium,

mj,k = (2− δj,k)(nj · nk)/(4n) (3.4)

for all integers j and k such that 1 ≤ k ≤ j ≤ r, where δj,k is the Kronecker delta,

δj,k =

{
0, j 6= k
1, j = k

(3.5)

for j, k = 1, 2, . . . , r.
The observed counts of genotypes (nj,k) in a random sample from a population in Hardy-

Weinberg equilibrium usually do not deviate too much from their associated model counts
(mj,k). Suitable statistics — such as the P-values discussed in the coming subsection —
help distinguish inevitable fluctuations due to finite sample sizes and finite populations from
model mismatch. Without additional prior information, a goodness-of-fit test serves as an
omnibus litmus test to gauge consistency of the data with the Hardy-Weinberg equilibrium
model. Ideally, the goodness-of-fit test should be sensitive to the full range of interesting
alternative distributions; more realistically, several different goodness-of-fit tests can be used
jointly, each sensitive to its own class of alternatives. If such an essentially nonparametric
test indicates deviation from equilibrium, different parametric tests can then be used to
elucidate particular effects of the deviation such as directions of disequilibrium or level of
inbreeding. Several parametric Bayesian methods can be appropriate, and we refer the
reader to the discussions of Chen and Thomson (1999), Shoemaker et al. (1998), Ayres and
Balding (1998), Lauretto et al. (2009), Li and Graubard (2009), and Consonni et al. (2011).
In this chapter, we will focus on nonparametric (or nearly nonparametric) tests of fit, but
we emphasize that goodness-of-fit tests should be combined with Bayesian approaches and
other types of evidence for and against the equilibrium hypothesis.

3.3.1 Goodness-of-fit testing

A goodness-of-fit test compares the model and empirical distributions using one of many
possible divergences. Three classic measures of discrepancy, all special cases of Cressie-Read
power-divergences, are χ2,

χ2 =
∑

1≤k≤j≤r

(
nj,k −mj,k

)2

mj,k
, (3.6)

the log–likelihood-ratio

g2 = 2
∑

1≤k≤j≤r

nj,k ln
( nj,k

mj,k

)

, (3.7)
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and the Hellinger/Freeman-Tukey distance

h2 = 4
∑

1≤k≤j≤r

(√
nj,k −

√
mj,k

)2
. (3.8)

The end result of a goodness-of-fit test is the “P-value,” the probability of observing a
discrepancy between model and sample proportions of genotypes at least as extreme as the
measured discrepancy, under the null hypothesis of i.i.d. draws from the model. If a goodness-
of-fit test returns a sufficiently small P-value — .01 or .001, for example — then we can be
highly confident that the model assumptions do not hold. A more powerful measure of
discrepancy for a given data set will produce a smaller P-value if the null hypothesis is not
consistent with the data. We remark that there are subtleties involved with the definition
and interpretation of P-values, as discussed, for example, in the appendix.

In the present chapter, we consider two types of commonly-used P-values, the “plain”
P-value and the “fully conditional” P-value. Other possibilities include Bayesian P-values,
as discussed by Gelman (2003), and other formulations.

To compute the plain P-value, we repeatedly simulate n i.i.d. draws from the model
multinomial distribution (mj,k/n). For each simulation, say the ith, we compute the geno-

typic counts N
(i)
j,k , the allelic counts N

(i)
j =

(∑j
k=1N

(i)
j,k +

∑r
k=j N

(i)
k,j

)
, the allelic proportions

Θ
(i)
j = N

(i)
j /(2n), and the equilibrium model counts associated with the simulated sample,

M
(i)
j,k = (2 − δj,k)N

(i)
j N

(i)
k /(4n). The plain P-value is the fraction of times the discrepancy

between the simulated counts (N
(i)
j,k) and their model counts (M

(i)
j,k) is at least as large as the

measured discrepancy between the observed counts (nj,k) and their model counts (mj,k).
The fully conditional P-value imposes additional restrictions on the probability space

associated with the null hypothesis. In contrast with the set-up for plain P-values, the
observed counts of alleles, n1, n2, . . . , nr, are treated as known quantities in the model when
calculating the fully conditional P-value, remaining fixed upon hypothetical repetition of the
experiment. More specifically, we repeatedly simulate n i.i.d. draws from the hypergeometric
distribution that results from conditioning the multinomial model distribution (mj,k/n) on
the observed allele counts, N1 = n1, N2 = n2, . . . , Nr = nr. Guo and Thompson (1992)
provided an efficient means for performing such a simulation: apply a random permutation
to the sequence

(
n1

︷ ︸︸ ︷

A1,A1, . . . ,A1,

n2
︷ ︸︸ ︷

A2,A2, . . . ,A2, . . . ,

nr
︷ ︸︸ ︷

Ar,Ar, . . . ,Ar
︸ ︷︷ ︸

2n

)

(3.9)

and identify successive pairs {A2j ,A2j+1}. The fully conditional P-value is the fraction of

times the discrepancy between the simulated counts (N
(i)
j,k) and the model counts (mj,k) is

at least as large as the measured discrepancy.
Section 3.8 below provides pseudocode for calculating plain and fully conditional P-values.

Remark 3.3.1. Note that P-values computed by repeated Monte-Carlo simulation are in
fact exact: given any specified precision ε, Hoeffding’s inequality guarantees with 99.9%
confidence that the P-value obtained using ℓ simulations will be within ε of the P-value P
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obtained using infinitely many simulations, as long as ℓ ≥ 4/ε2. In all our experiments, we
used ℓ = 16,000,000 Monte-Carlo simulations, so that the reported three digits of precision
in our P-values are correct with at least 99.9% confidence.

Remark 3.3.2. The parameters θ1, θ2, . . . , θr in the family of HWE distributions (3.1)
are known as nuisance parameters. The fully conditional test we describe is a variant of
the conditional test proposed by Fisher (1925) and studied by Mehta and Patel (1983) for
dealing with nuisance parameters in the context of contingency-table analysis, and amounts
to conditioning on a minimally sufficient statistic for estimating the nuisance parameters.
Conditioning in the context of HWE testing dates back to the works of Levene (1949) and
Haldane (1954), but was not considered feasible for large data sets until Guo and Thompson
(1992) derived the aforementioned method for efficiently simulating draws from the condi-
tional distribution. Note that while conditioning on the counts of alleles in the observed
population does effectively eliminate the nuisance parameters from the null hypothesis, it
also imposes additional assumptions on the experiment that are not necessarily reflective of
reality. In small samples drawn from a large population, the allele counts are not known a
priori and estimates of the allele counts can change upon repetition of the experiment. The
plain P-value takes this into account, unlike the fully conditional P-value; for details, see the
appendix.

3.3.2 The negative log-likelihood statistic

A popular alternative to testing Hardy-Weinberg equilibrium with the power-divergence
discrepancies χ2, g2, and h2 is to use a discrepancy based directly on the likelihood function
for the multinomial distribution,

L = Prob
{

N1,1 = n1,1, N2,1 = n2,1, . . . , Nr,r = nr,r

}

=
n!

n1,1! · n2,1! · · ·nr,r! · nn
m

n1,1

1,1 ·mn2,1

2,1 · · ·mnr,r

r,r . (3.10)

Because the likelihood has an excessively large dynamic range, the negative of the logarithm
of the likelihood, L = − ln(L), is instead used as the test statistic. Because the logarithm is
nondecreasing over its domain, the negative likelihood function and negative log-likelihood
function produce the same P-value. The negative log-likelihood function looks similar to
the log–likelihood-ratio function g2 defined in (3.7), but there is an important distinction:
the log–likelihood-ratio, which sums the logarithms of ratios between observed and expected
counts, is a proper statistical divergence. The negative log-likelihood function is not a
divergence, and this results in several undesirable properties that have led many, including
Gibbons and Pratt (1975), Radlow and Alf (1975), and Engels (2009), to criticize its use.

The negative log-likelihood function does have something in common with the power-
divergence discrepancies: under the null hypothesis, the negative log-likelihood statistic L
and the power-divergence statistics X2, G2, and H2 are all asymptotically equivalent, with
the latter three converging in distribution to a χ2 distribution with r(r − 1)/2 degrees of
freedom as the number of draws n tends to infinity and the number of alleles remains fixed;
Brownlee (1965) (among others) provides a proof. Using a statistic with an easily calculated
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(or tabulated) asymptotic approximation was necessary before computers became widely
available. Now, however, the exact (non-asymptotic) P-values for these statistics or any
other measure of discrepancy are easy to compute via Monte-Carlo simulations.

3.3.3 The root-mean-square statistic

A natural measure of discrepancy for goodness-of-fit testing which has not received as much
attention in the literature is the root-mean-square distance,

f =

√
2

r(r + 1)

∑

1≤k≤j≤r

(nj,k −mj,k)2. (3.11)

Please note that the root-mean-square f is closely related to the Frobenius distance of
Chapter 4. The square of the root-mean-square distance is proportional to χ2 from (3.6) when
the model distribution is uniform, but takes on a very different character when the model
distribution diverges from uniformity. In practice, multiallelic distributions of genotypes are
often very nonuniform, with a few common alleles and many rare alleles. In contrast to
the classical statistics, the asymptotic distribution for the root-mean-square statistic F in
the limit of infinitely many draws, while completely well-defined and efficiently calculated
on a modern computer, depends on the model distribution (see Chapters 6 and 7). This
has likely contributed to its underrepresentation in the literature, as much of the classical
statistical methodology was canonized before computers became readily accessible. Using
the pseudocode provided in Section 3.8, P-values for the root-mean-square statistic are now
just as easy to compute as P-values for any of the classical statistics.

3.4 Numerical results

In this section, we compare the performances of the root-mean-square and the classical
statistics for detecting deviations from Hardy-Weinberg equilibrium. We evaluate the various
statistics on the three benchmark datasets from Guo and Thompson (1992). Figure 3.1
displays the three datasets (Examples 1, 2, and 3) as lower-triangular arrays of counts. For
each array, the boldface entry in each cell corresponds to the number nj,k of observed counts
of genotype {Aj,Ak} in the sample, and the second entry in each cell corresponds to the
expected number mj,k of counts under HWE.

For each example, and for each of the five statistics X2, G2, H2, L, and F , we calculate
both the plain and fully conditional P-values using 16,000,000 Monte-Carlo simulations for
each calculation. Recall that a small P-value P lets us infer, with 100(1− P )% confidence,
that the draws are not i.i.d. or that the draws are inconsistent with the HWE model.

The results of the analyses of Examples 1, 2, and 3, displayed in Table 3.1, suggest that for
both plain and fully conditional exact tests of goodness-of-fit, the root-mean-square can be
significantly more powerful than the classic statistics in detecting deviations. In particular,
the root-mean-square test rejects the null hypothesis of HWE at the 5% significance level in
Example 1 while the other statistics do not, and rejects the null hypothesis of HWE at the
1% significance level in Example 2 while the other statistics do not.
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Figure 3.2 contains boxplots for relative root-mean-square discrepancies and relative χ2

discrepancies simulated under the plain Hardy-Weinberg equilibrium null hypothesis corre-
sponding to the dataset from Example 2. Each boxplot displays the median, upper and lower
quartiles, and whiskers reaching from the 1st to 99th percentiles for the observed and model
proportions. The boxplots are for simulated data, whereas the large open circles indicate the
observed data. As seen in the two boxplots, the normalization by expected proportion in the
summands of χ2 from (3.6) is reflected in the larger contribution of relative discrepancies to
the reported P-values; in contrast, the equal weighting of the summands of the root-mean-
square from (3.11) is reflected in the larger contribution of absolute discrepancies to the
reported root-mean-square P-values. In particular, both the χ2 and root-mean-square tests
report a statistically significant deviation in the 5th-largest index, corresponding to the 982
observed counts versus 1057.6 expected counts of genotype {A4,A1} in Example 2. However,
the P-value reported by the root-mean-square test is an order of magnitude smaller than the
P-value reported by the χ2 test. In the χ2 summation, the expected relative deviations in
the rare genotypes mask the statistically significant deviation in the 5th-largest index.

The P-values for the dataset from Example 1 admit a similar explanation.

In contrast, the small P-value for the χ2 test in Example 3 is due to the single observed
count of genotype {A6,A6}. Indeed, by removing this single count from the dataset and
re-running the χ2 goodness-of-fit test on the remaining n = 29 draws, the χ2 statistic X2

returns a P-value of .207 ± .001 (meaning that χ2 no longer finds the discrepancy to be
significant).

3.5 Numerical power studies

In this section, we compare the power and size for the statistics X2, G2, H2, L, and F in
detecting deviations from HWE, considering populations with increased homozygosity (as
due to inbreeding), populations with increased heterozygosity, and populations of genotypes
undergoing selection (Chen and Thomson, 1999; Ayres and Balding, 1998; Lauretto et al.,
2009). (Recall that power is one minus the probability of a false negative, i.e., of an error of
type II; size is the probability of a false positive, i.e., of an error of type I.) The results in
Table 3.2 support the assertion that the root-mean-square and the classic statistics focus their
power on complementary classes of alternatives. We consider four parameter specifications:

Alternative 1: r = 10, n = 50, and θ1 = θ2 = 1/3, and θj = 1/24 for 3 ≤ j ≤ 10

Alternative 2: r = 10, n = 100, and θ1 = θ2 = 1/3, and θj = 1/24 for 3 ≤ j ≤ 10

Alternative 3: r = 10, n = 200, and θ1 = θ2 = 1/3, and θj = 1/24 for 3 ≤ j ≤ 10

Alternative 4: r = 20, n = 200, and θj = a/j for 1 ≤ j ≤ 20, where a = (
∑20

j=1 1/j)
−1

3.5.1 Deviations due to selection

When there is selection for or against a particular allele or genotype in the population, the
result is an excess or deficiency of genotypes carrying the particular allele or pair of alleles
compared to what would be expected under HWE. To account for selection, one introduces
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fitness parameters wj,k > 0 into the HWE equations:

pj,k =

{
2wj,k · θj · θk/v, 1 ≤ k < j ≤ r
wk,k · (θk)2/v, 1 ≤ k = j ≤ r,

(3.12)

where v is a normalization constant. We consider the scenario where the common allele
A1 is undergoing selection, so that genotypes carrying allele A1 have higher fitness in the
population:

wj,k =

{
3/2, k = 1
1, k > 1.

(3.13)

Table 3.2 lists the power and size of the various statistical tests in detecting deviations
from HWE due to selection for common alleles. In all examples, the root-mean-square
statistic appears to be more powerful than the classic statistics while maintaining the correct
size. We will provide theoretical justification for these observations through an asymptotic
analysis in Section 3.6.

3.5.2 Deviations due to inbreeding

We now consider genotypic distributions parameterized by an inbreeding coefficient, c, which
describes how likely members of the population with similar genetic make-up are to mate
with each other:

pj,k =

{
2(1− c) · θj · θk, 1 ≤ k < j ≤ r

(θk)
2 + c · θk · (1− θk), 1 ≤ k = j ≤ r.

(3.14)

Hardy-Weinberg equilibrium corresponds to c = 0. A negative value for c corresponds
to a deficiency of homozygotes, while a positive value for c corresponds to an excess of
homozygotes. Table 3.2 displays the power of the various tests against alternatives of the
form (3.14), with c = +1/10. The root-mean-square statistic appears to be less powerful than
the classic statistics in detecting deviations due to inbreeding. Moreover, it is often desired
to estimate the inbreeding coefficient c, for example because of its role in quantifying the
behavior of marker-trait association tests in non-HWE populations; as shown, for example,
by Rohlfs and Weir (2008), the χ2 test statistic is equal to nĉ, where ĉ is the maximum
likelihood estimator.

3.6 An asymptotic power analysis

In this section, we prove that the root-mean-square has asymptotic power one while the
classical statistics have asymptotic power zero for a representative family of datasets. As a
model for the setting where the number of draws and number of genotypes are of the same
magnitude, we consider a limit in which the number of alleles and number of draws tend to
infinity together. Note that the asymptotic χ2 approximation of the classical statistics is not
valid in this limit.

We consider a gene having r + 1 alleles, with one common allele and r rare alleles. The
Common Allele dataset involves n = 3r observed genotypes, distributed as indicated in
Table 3.3.
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(a) Example 1: n = 45. (b) Example 2: n = 8297.

(c) Example 3: n = 30.

Figure 3.1: The three datasets from Guo and Thompson (1992). Observed counts are bold;
model counts are given below the observed counts.
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Table 3.1: P-values with 99.9% confidence intervals for X2, the log–likelihood-ratio statistic
G2, the Hellinger distance H2, the negative log-likelihood statistic L, and the root-mean-
square F , for the observed genotypic counts in Examples 1, 2, and 3 to be consistent with
the Hardy-Weinberg equilibrium model.

Example 1
statistic plain P-value fully conditional P-value
X2 .693 ± .001 .709 ± .001
G2 .600 ± .001 .630 ± .001
H2 .562 ± .001 .602 ± .001
L .648 ± .001 .714 ± .001
F .039 ± .001 .039 ± .001

Example 2
statistic plain P-value fully conditional P-value
X2 .020 ± .001 .020 ± .001
G2 .013 ± .001 .013 ± .001
H2 .027 ± .001 .025 ± .001
L .016 ± .001 .018 ± .001
F .002 ± .001 .002 ± .001

Example 3
statistic plain P-value fully conditional P-value
X2 .015 ± .001 .026 ± .001
G2 .181 ± .001 .276 ± .001
H2 .307 ± .001 .449 ± .001
L .155 ± .001 .207 ± .001
F .885 ± .001 .917 ± .001
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Table 3.2: Statistical power and size of the various tests of HWE against deviations due to
selection, i.e., deviations of the form (3.12) with parameters as specified in Alternatives 1–4
and fitness parameters (3.13), and against deviations due to inbreeding, i.e., deviations of
the form (3.14) with parameters as specified in Alternatives 1–4 and inbreeding parameter
c = 1/10. Power and size are at the 5% significance level, computed using 5000 simulations
from the alternative distribution and expected distribution, respectively, with 5000 Monte-
Carlo trials per simulation.

Deviations due to selection for common allele — plain P-value
Alternative 1 Alternative 2 Alternative 3 Alternative 4

statistic power size power size power size power size
X2 .06 .06 .04 .05 .04 .04 <.01 .06
G2 .07 .08 .07 .06 .07 .06 .01 .08
H2 .07 .07 .08 .06 .08 .05 .01 .07
L .03 .04 .03 .04 .04 .04 <.01 .03
F .09 .05 .13 .05 .19 .05 .23 .05

Deviations due to common-allele selection — fully conditional P-value
Alternative 1 Alternative 2 Alternative 3 Alternative 4

statistic power size power size power size power size
X2 .04 .05 .03 .04 .05 .06 .03 .05
G2 .05 .05 .04 .04 .06 .06 .04 .05
H2 .04 .05 .05 .05 .07 .06 .04 .05
L .04 .05 .03 .04 .03 .06 .02 .05
F .09 .05 .11 .05 .13 .06 .15 .05

Deviations due to inbreeding — plain P-value
Alternative 1 Alternative 2 Alternative 3 Alternative 4

statistic power size power size power size power size
X2 .20 .06 .34 .05 .60 .04 .64 .06
G2 .25 .08 .29 .06 .48 .06 .64 .08
H2 .19 .07 .18 .06 .28 .05 .42 .07
L .23 .04 .39 .04 .63 .04 .70 .03
F .11 .05 .16 .05 .26 .05 .29 .05

Deviations due to inbreeding — fully conditional P-value
Alternative 1 Alternative 2 Alternative 3 Alternative 4

statistic power size power size power size power size
X2 .21 .05 .35 .04 .61 .06 .68 .05
G2 .18 .05 .26 .04 .48 .06 .56 .05
H2 .14 .05 .16 .05 .30 .06 .36 .05
L .25 .05 .37 .04 .63 .06 .74 .05
F .12 .05 .15 .05 .27 .06 .32 .05
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Figure 3.2: Expected versus observed relative root-mean-square discrepancies (top) and
expected versus observed relative χ2-discrepancies (bottom) for the data in Example 2.
The root-mean-square is tuned to detect large absolute discrepancies between observed and
expected proportions, while χ2 (and asymptotically equivalent statistics such as the log–
likelihood-ratio) is tuned to detect large relative discrepancies between observed and expected
proportions.

Table 3.3: Common Allele dataset

n = 3r observed genotypes

n1,1 = r of type {A1,A1}, n1,1/n = 1/3
nj,1 = 2 of type {Aj ,A1}, nj,1/n = 2/(3r), 2 ≤ j ≤ r + 1
nj,k = 0 of type {Aj ,Ak}, nj,k/n = 0, 2 ≤ k ≤ j ≤ r + 1

n1 = 4r alleles of type A1, n1/(2n) = 2/3
nj = 2 alleles of type Aj , nj/(2n) = 1/(3r), 2 ≤ j ≤ r + 1
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The maximum-likelihood model counts for this dataset are






m1,1 = 4r/3,
mj,1 = 4/3, 2 ≤ j ≤ r + 1,
mj,j = 1/(3r), 2 ≤ j ≤ r + 1,
mj,k = 2/(3r), 2 ≤ k < j ≤ r + 1.

(3.15)

To see that the Common Allele dataset becomes increasingly inconsistent with the Hardy-
Weinberg model as r increases, observe that under the null hypothesis, we would expect in a
sample of n = 3r genotypes to see r/3 genotypes containing only rare alleles. The Common
Allele dataset however contains no genotypes consisting of only rare alleles. In spite of this
inconsistency, the plain P-values for each of the four classic statistics X2, G2, H2, and L
converge to 1 as r → ∞, indicating zero asymptotic power. In contrast, the P-value for the
root-mean-square statistic converges to 0.

Theorem 3.6.1. In the limit r → ∞, the plain P-values (as computed via Algorithm 1
of Section 3.8) given by X2, the log–likelihood-ratio G2, the Hellinger distance H2, and
the negative log-likelihood L for the Common Allele dataset to be consistent with the Hardy-
Weinberg equilibrium model all converge to 1, while the plain P-value for the root-mean-square
converges to 0.

The crux of the proof is that, as r increases, relative fluctuations in the rare geno-
types simulated under HWE become sufficiently large that the sum of relative discrepancies
expected under the null hypothesis exceeds the sum of the observed relative discrepancies.
However, the sum of absolute fluctuations expected under the HWE model remains bounded
below the sum of the observed absolute discrepancies.

We now sketch a proof of Theorem 3.6.1. In the proof of Theorem 3.6.1, we will use the
notation U(r) & V (r) to indicate that there exists some positive real number c such that
U(r) ≥ c ·V (r) with probability approaching 1 as r → ∞. We use the notation U(r) . V (r)
accordingly. We write U(r) ∼ V (r) to mean that U(r)/V (r) → 1 as r → ∞. We write
U(r) → v to mean that U(r) converges in distribution to a unit mass concentrated at the
point v, as r → ∞.

Sketch of proof of Theorem 3.6.1. We will be using the notation for computing plain P-values
in Algorithm 1 of Section 3.8, along with the Common Allele dataset in Table 3.3 and its
maximum-likelihood HWE model counts (3.15). We will refer to A1 as the “common” allele
and to {A1,A1} as the common genotype; we will refer to the remaining r alleles as “rare,”
to genotypes of the form {Aj,A1}, 2 ≤ j ≤ r + 1, as “rare observed” genotypes, and to
genotypes of the form {Aj ,Ak}, 2 ≤ k ≤ j ≤ r + 1, as “unobserved” genotypes.

1. Since the model proportion θ1 = 2/3 remains constant as r increases, but the number
of draws n = 3r tends to ∞, the law of large numbers implies Θ1 → θ1 = 2/3, and so
M1,1/n → m1,1/n = 4/9 and

∑r+1
j=2 Θj = 1 − Θ1 → 1/3. Thus, asymptotically, 2/3 of

the alleles and 4/9 of the genotypes simulated from the model will be common.

2. The law of large numbers similarly yields that
∑r+1

j=2Mj,1/n →
∑r+1

j=2 mj,1/n = 4/9
and

∑

2≤k≤j≤r+1Mj,k/n → ∑

2≤k≤j≤r+1mj,k/n = 1/9. Thus, asymptotically, 4/9 of
the draws simulated from the model will be rare observed genotypes, while 1/9 of the
simulated draws will be unobserved genotypes.
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3. With probability approaching 1 as r → ∞, every one of the roughly n/9 = r/3
simulated draws from the pool of r(r + 1)/2 types of unobserved genotypes will have
a different genotype from the others. At this point, roughly r/3 of the simulated
proportions Nj,k/n, 2 ≤ k ≤ j ≤ r + 1, will equal 1/(3r), while the others will be 0.

4. The coupon collector’s problem (described, for example, by Motwani and Raghavan
(1995)) implies that with probability approaching 1 as r → ∞, among the roughly 2r
simulated draws from the pool of r rare alleles, no rare allele will be drawn more than
log(r) times (fixing the base of the logarithm at any real number greater than 1 that
does not depend on r), and at least 3r/4 among the r rare alleles will be drawn at
least twice.

In particular, the last point above implies that, with probability approaching 1 as r → ∞,
all of the simulated rare proportions Θj = Θj(r), 2 ≤ j ≤ r + 1, will satisfy

Θj(r) ≤ log(r)/r, (3.16)

and, for at least 3r/4 among the r simulated rare proportions,

1/(3r) ≤ Θj(r) ≤ log(r)/r. (3.17)

1. The P-value for the root-mean-square goes to 0 when r → ∞: The measured sum-
square discrepancy f̃ 2 = (r+1)(r+2)

2n2 f 2 between the observed proportions nj,k/n and the
model proportions mj,k/n is

f̃ 2 =
(n1,1

n
− m1,1

n

)2

+

r+1∑

j=2

(nj,1

n
− mj,1

n

)2

+
∑

2≤k≤j≤r+1

(mj,k

n

)2

=

(
1

9

)2

+
4

81r
+

1

81r3
+

2(r − 1)

81r3
. (3.18)

As r → ∞,

f̃ → 1

9
. (3.19)

If we instead consider the sum-square statistic F̃ 2 = (r+1)(r+2)
2n2 F 2 resulting from drawing

n = 3r genotypes i.i.d. from the model distribution (3.15), points 1, 3, and 4 above
together with (3.16) give

F̃ 2 .
(N1,1 − 4r/3)2

9r2
+

r+1∑

j=2

(
4 log r

3r

)2

+
∑

2≤k≤j≤r+1:Nj,k=1

(
1

3r

)2

+
∑

2≤k≤j≤r+1:Nj,k=0

(
log r

r

)4

d∼ Z2

27r/4
+

16(log r)2

9r
+

r

3

1

9r2
+

(
r(r + 1)

2
− r

3

)(
log r

r

)4

, (3.20)
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where (on account of the central limit theorem) Z = (N1,1 − 4r/3)/
√

4r/3 converges
in distribution to a standard normal distribution as r → ∞. Therefore, as r → ∞,

F̃ → 0. (3.21)

Combining (3.19) and (3.21) shows that the P-value for the root-mean-square statistic,
P = Prob{F ≥ f} = Prob{F̃ ≥ f̃}, goes to 0 as r → ∞.

2. The P-value for X2 goes to 1 when r → ∞: Just as with the measured sum-square
discrepancy f̃ , the measured normalized χ2 discrepancy χ̃2 = χ2/n converges to some
finite positive real number as r → ∞. Alternatively, if we simulate n = 3r geno-
types from the model distribution and (following point 3 above) consider only those
roughly r/3 summands in the normalized χ2 statistic X̃2 = X2/n corresponding to the
unobserved genotypes with one simulated draw, we obtain from (3.16) that

X̃2 &
r

3
min

2≤k≤j≤r+1:Nj,k=1

(
Nj,k

n
− Mj,k

n

)2 / (
Mj,k

n

)

&
r

3

(

1

3r
−
(
log r

r

)2
)2 / (

log r

r

)2

. (3.22)

From this it follows that X̃2 & r
(log r)2

→ ∞, and so the P-value for the χ2 statistic,

P = Prob{X2 ≥ χ2} = Prob{X̃2 ≥ χ̃2}, goes to 1 as r → ∞.

3. The P-values for the log–likelihood-ratio G2 and negative log-likelihood L go to 1 when
r → ∞ by an argument analogous to that used for the χ2 P-value.

4. The P-value for the Hellinger statistic H2 goes to 1 when r → ∞: We have to be
a bit more careful with the analysis of the Hellinger discrepancy h̃2 = h2/(4n). The
observed discrepancy is

h̃2 =
(
√
3− 2)2

9
+

r+1∑

j=2

(√

2

3r
−
√

4

9r

)2

+
∑

2≤k<j≤r+1

2

9r2
+

r+1∑

j=2

1

9r2

=
(
√
3− 2)2

9
+

10− 4
√
6

9
+

1

9
= .14 . . . . (3.23)

Alternatively, suppose we simulate n = 3r genotypes from the model distribution and
consider r sufficiently large. Every estimated rare allele proportion will be bounded:
Θj ≤ log(r)/r, as stated in (3.16). Furthermore, by (3.17), at least 3/4 of these
proportions will satisfy Θj ≥ 1/(3r), ensuring that at least (3/4)2r2/2 − r among the
r(r+1)/2 simulated proportions for the unobserved genotypes satisfyMj,k/n ≥ 2/(9r2).
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Figure 3.3: P-values (accurate to three digits with 99% confidence) forX2, the log–likelihood-
ratio statistic G2, the Hellinger statistic H2, the negative log-likelihood statistic L, and the
root-mean-square F , for the observed genotypic counts in the Common Allele dataset to be
consistent with the Hardy-Weinberg equilibrium model (3.4), as a function of the number of
rare alleles r.

Then, for sufficiently large r,
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√
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3
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)2
r2

2
− r − r

3

)(
2

9r2

)

→ .17 . . . . (3.24)

Combining (3.23) and (3.24), we conclude that the P-value for the Hellinger distance,
P = Prob{H2 ≥ h2} = Prob{H̃2 ≥ h̃2}, goes to 1 as r → ∞.

Figure 3.3 shows that the convergence of the classic P-values to 1, and of the root-mean-
square P-value to 0, occurs very quickly. This convergence is demonstrated for both the
plain and fully conditional P-values, even though Theorem 3.6.1 applies directly only to the
plain P-values.

To conclude this section, we remark that the particular distribution of draws in the
Common Allele dataset was rather arbitrary, and that a similar asymptotic analysis holds
for many other datasets. For example, we could have considered a dataset involving two,
three, or four common alleles, or one common allele and three fairly common alleles, and so
on.
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3.7 Conclusion

On two of the three benchmark datasets from Guo and Thompson (1992), the root-mean-
square test rejects the hypothesis of Hardy-Weinberg equilibrium at standard significance
levels while the classic tests fail to reject the null hypothesis. These numerical results,
along with the asymptotic power analysis of Section 3.6, suggest that the root-mean-square
statistic can be better than the classic statistics at detecting many deviations of interest in
practice. At the very least, the root-mean-square statistic and the classic statistics focus on
complementary classes of deviations from Hardy-Weinberg equilibrium, and their combined
P-values provide a more informative test than either P-value used on its own.
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3.8 Addendum: Pseudocodes for computing exact P-

values

Algorithm 1: Computing the plain P-value

Input: observed genotype counts (nj,k) and allele counts (nj), number of Monte-Carlo
simulations ℓ, and test statistic D (D = X2, G2, H2, . . . )
Output: plain P-value associated with the measure of discrepancy D(nj,k, mj,k)

Procedure:
Compute maximum-likelihood model counts mj,k = (2− δj,k)nj nk/(4n)
Measure the discrepancy d = D(nj,k, mj,k)
for i = 1 to ℓ

- Draw n genotypes X
(i)
1 , . . . , X

(i)
q , . . . , X

(i)
n i.i.d. from the multinomial model distribution

(mj,k/n)

- Aggregate simulated genotype counts N
(i)
j,k = #

{
q : X

(i)
q = {Aj , Ak}

}

- Aggregate simulated allele counts N
(i)
j =

(∑j
k=1N

(i)
j,k +

∑r
k=j N

(i)
k,j

)
and proportions

Θ
(i)
j = N

(i)
j /(2n)

- Compute maximum-likelihood counts M
(i)
j,k = (2− δj,k)N

(i)
j N

(i)
k /(4n)

- Evaluate simulated discrepancy D(i) = D(N
(i)
j,k,M

(i)
j,k)

endfor
return plain P-value, P = #{i : D(i) ≥ d}/ℓ

Algorithm 2: Computing the fully conditional P-value

Input: observed genotype counts (nj,k) and allele counts (nj), number of Monte-Carlo
simulations ℓ, and test statistic D (D = X2, G2, H2, . . . )
Output: fully conditional P-value associated with the measure of discrepancy D(nj,k, mj,k)

Procedure:
Compute maximum-likelihood model counts mj,k = (2− δj,k)nj nk/(4n)
Measure the discrepancy d = D(nj,k, mj,k)
for i = 1 to ℓ

- Apply a random permutation to the sequence of alleles as in (3.9) to obtain n genotypes

X
(i)
1 , . . . , X

(i)
q , . . . , X

(i)
n with fixed allele counts nj

- Aggregate simulated genotype counts N
(i)
j,k = #

{
q : X

(i)
q = {Aj , Ak}

}

- Evaluate simulated discrepancy D(i) = D(N
(i)
j,k, mj,k)

endfor
return fully conditional P-value, P = #{i : D(i) ≥ d}/ℓ



Chapter 4

Homogeneity in
contingency-tables/crosstabs

The model for homogeneity of proportions in a two-way contingency-table/cross-tabulation
is the same as the model of independence, except that the probabilistic process generating the
data is viewed as fixing the column totals (but not the row totals). When gauging the consis-
tency of observed data with the assumption of independence, the previous chapters illustrate
that the Euclidean/Frobenius/Hilbert-Schmidt distance is often far more powerful than the
classical statistics such as χ2, the log–likelihood-ratio “G2,” the Freeman-Tukey/Hellinger
distance, and other members of the Cressie-Read power-divergence family. This chapter
indicates that the Euclidean/Frobenius/Hilbert-Schmidt distance can be more powerful for
gauging the consistency of observed data with the assumption of homogeneity, too.

4.1 Recap

The statistical analysis of categorical data is commonly formulated in the framework of
contingency-tables/cross-tabulations; Table 4.1 provides a typical two-way example (see,
for instance, Chapter 4 of Andersen, 1990, for a comprehensive treatment). A common
task is to ascertain whether the given data (displayed in Table 4.1) is consistent up to
expected statistical fluctuations with the model for homogeneity of proportions (displayed
in Table 4.2). When considering homogeneity, we assume that the probabilistic process
generating the given data fixes the column totals (but not the row totals) by construction.
Therefore, to gauge whether the given data displayed in Table 4.1 is consistent with the
assumed homogeneity displayed in Table 4.2, we perform the following three steps:

1. We generate s sets of draws, with the kth set consisting of n�,k independent and
identically distributed draws from the probability distribution (p1, p2, . . . , pr), where
p1 = n1,�/n, p2 = n2,�/n, . . . , pr = nr,�/n. Please note that pj = (nj,� · n�,k/n)/n�,k for
j = 1, 2, . . . , r; these are homogeneous proportions (since p1, p2, . . . , pr are the same
for every column index k).

2. For each of the s sets of draws — say the kth set — we define Nj,k to be the number
of draws falling in the jth row, for j = 1, 2, . . . , r.

82
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Table 4.1: A typical two-way contingency-table/cross-tab (nj,k is a nonnegative integer with
j = 1, 2, . . . , r, k = 1, 2, . . . , s; nj,� =

∑s
k=1 nj,k is a row total with j = 1, 2, . . . , r;

n�,k =
∑r

j=1 nj,k is a column total with k = 1, 2, . . . , s; and n�,� =
∑r

j=1

∑s
k=1 nj,k = n is the

grand total)

1 2 · · · s
1 n1,1 n1,2 · · · n1,s n1,�

2 n2,1 n2,2 · · · n2,s n2,�
...

...
...

. . .
...

...
r nr,1 nr,2 · · · nr,s nr,�

n�,1 n�,2 · · · n�,s n�,�

Table 4.2: The model for homogeneity of proportions (n1,�, n2,�, . . . , nr,� are the row totals;
n�,1, n�,2, . . . , n�,s are the column totals; and n�,� = n is the grand total)

1 2 · · · s

1 n1,� · n�,1/n n1,� · n�,2/n · · · n1,� · n�,s/n n1,�

2 n2,� · n�,1/n n2,� · n�,2/n · · · n2,� · n�,s/n n2,�

...
...

...
. . .

...
...

r nr,� · n�,1/n nr,� · n�,2/n · · · nr,� · n�,s/n nr,�

n�,1 n�,2 · · · n�,s n�,�

3. We calculate the probability P that the discrepancy between the simulated counts Nj,k

and the model Nj,� · N�,k/n is greater than or equal to the discrepancy between the
observed counts nj,k and the assumed nj,� · n�,k/n. When calculating this probability,
we view Nj,k and Nj,� as random, while viewing all other numbers as fixed. Please note
that, by construction, N�,k = n�,k for k = 1, 2, . . . , s.

The number P defined in Step 3 is known as the (exact) P-value. Given the P-value
P , we can have 100(1 − P )% confidence that the observed draws are not consistent with
assuming the homogeneity displayed in Table 4.2. See the appendix for further discussion of
P-values and their interpretation; the appendix details subtleties involved in the definition
and interpretation of these P-values, which differ from some other common types of “P-
values.” We now continue to Section 4.2, which quantifies the discrepancies specifying the
P-value P in Step 3 above.
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4.2 Definitions of the divergences

The definition above of the P-value P requires a metric for measuring the discrepancies. The
canonical choices are χ2 and the log–likelihood-ratio G2:

χ2 =

r∑

j=1

s∑

k=1

(nj,k − (nj,� · n�,k/n))
2

nj,� · n�,k/n
(4.1)

X2 =
r∑

j=1

s∑

k=1

(Nj,k − (Nj,� ·N�,k/n))
2

Nj,� ·N�,k/n
(4.2)

Pχ2 = Prob{X2 ≥ χ2} (4.3)

g2 = 2
r∑

j=1

s∑

k=1

nj,k · ln
(

nj,k

nj,� · n�,k/n

)

(4.4)

G2 = 2

r∑

j=1

s∑

k=1

Nj,k · ln
(

Nj,k

Nj,� ·N�,k/n

)

(4.5)

Pg2 = Prob{G2 ≥ g2} (4.6)

Other possibilities include the Hellinger (or Freeman-Tukey) distance and the Frobenius (or
Hilbert-Schmidt or Euclidean) distance:

h2 = 4
r∑

j=1

s∑

k=1

(
√
nj,k −

√

nj,� · n�,k/n)
2 (4.7)

H2 = 4
r∑

j=1

s∑

k=1

(
√

Nj,k −
√

Nj,� ·N�,k/n)
2 (4.8)

Ph2 = Prob{H2 ≥ h2} (4.9)

f 2 =

r∑

j=1

s∑

k=1

(nj,k − (nj,� · n�,k/n))
2 (4.10)

F 2 =

r∑

j=1

s∑

k=1

(Nj,k − (Nj,� ·N�,k/n))
2 (4.11)

Pf2 = Prob{F 2 ≥ f 2} (4.12)

When taking probabilities in (4.3), (4.6), (4.9), and (4.12), we view the uppercase X2, G2,
H2, and F 2 as random variables, while viewing the lowercase χ2, g2, h2, and f 2 as fixed
numbers.

As discussed, for example, by Rao (2002), X2, G2, and H2 all converge to the same
distribution in the limit of large numbers of draws — X2, G2, and H2 are the best-known



4.3. COMPUTATION OF P-VALUES 85

members of the Cressie-Read power-divergence family. F 2 is not a member of the Cressie-
Read power-divergence family and does not necessarily converge to the same distribution
as X2, G2, and H2. Chapters 1 and 3 illustrate the many advantages of F 2 when neither
the row totals nor the column totals are fixed; the present chapter illustrates the advantages
when the column totals are fixed. However, F 2 is not uniformly more powerful than the
classical statistics. We recommend using both F 2 and a classical statistic such as G2.

In the sequel, Section 4.3 summarizes an algorithm for computing the P-values defined
above. Section 4.4 analyzes several data sets.

4.3 Computation of P-values

The definitions of the P-values in (4.3), (4.6), (4.9), and (4.12) involve the probabilities
of certain events. In the present chapter, we compute these probabilities via Monte-Carlo
simulations with guaranteed error bounds. Specifically, we conduct a large number ℓ of
simulations; in each simulation — say the ith — we perform the following steps (using the
data of Table 4.1):

1. We generate s sets of draws, with the kth set consisting of n�,k independent and
identically distributed draws from the probability distribution (p1, p2, . . . , pr), where
p1 = n1,�/n, p2 = n2,�/n, . . . , pr = nr,�/n. Please note that pj = (nj,� · n�,k/n)/n�,k for
j = 1, 2, . . . , r; these are homogeneous proportions (since p1, p2, . . . , pr are the same
for every column index k). Furthermore, the underlying distribution of the draws does
not depend on i.

2. For each of the s sets of draws — say the kth set — we define n
(i)
j,k to be the number

of draws falling in the jth row, for j = 1, 2, . . . , r.

3. We calculate the discrepancy f 2
(i) between the simulated counts n

(i)
j,k and the model

n
(i)
j,� · n

(i)
�,k/n, that is,

f 2
(i) =

r∑

j=1

s∑

k=1

(n
(i)
j,k − (n

(i)
j,� · n

(i)
�,k/n))

2. (4.13)

An estimate of the P-value Pf2 is the fraction of f 2
(1), f

2
(2), . . . , f

2
(ℓ) which are greater than

or equal to f 2 defined in (4.10). As discussed in Remark 1.3.2, the standard error of the
estimate is

√
Pf2(1− Pf2)/ℓ, where ℓ is the number of simulations.

Needless to say, we can compute the P-values for χ2, g2, and h2 via similar procedures,
with the same error bounds.

Remark 4.3.1. For all computations reported in the present chapter, we generated random
numbers via the C programming language procedure given on page 9 of Marsaglia (2003),
implementing the recommended complementary multiply with carry.
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4.4 Data analysis

To compare the performance of the various metrics for measuring the discrepancies between
observed and simulated data, we analyze several data sets. Using the procedure of Sec-
tion 4.3, we conduct ℓ = 4,000,000 Monte-Carlo simulations per P-value, for each of the
examples presented below. The standard error of the resulting estimate for the P-value P is
then

√

P (1− P )/2000; see Remark 1.3.2. Before reporting the P-values associated with the
data sets, we make two remarks concerning their interpretation:

Remark 4.4.1. A significance test can only indicate that observed data cannot be reasonably
assumed to have arisen from the model of homogeneous proportions; a significance test
cannot prove that the observed data can be reasonably assumed to have arisen from the
model of homogeneity. Thus, aside from considerations of multiple testing, if any statistic
strongly signals that the data cannot be reasonably assumed to have arisen from the model
of homogeneity, then we must reject (or at least question) the model — irrespective of any
large P-values for other statistics. For instance, if the P-value for the Frobenius distance f 2

is very small, then we should not accept the model of homogeneity, not even if the P-values
for χ2, the log–likelihood-ratio g2, and the Freeman-Tukey/Hellinger-distance h2 are large.

Remark 4.4.2. The term “negative log-likelihood” used in the present section refers to
the statistic that is simply the negative of the logarithm of the likelihood. The negative
log-likelihood is the same statistic used in the generalization of Fisher’s exact test discussed
by Guo and Thompson (1992); unlike the log–likelihood-ratio G2, this statistic involves only
one likelihood, not the ratio of two. We mention the negative log-likelihood just to facilitate
comparisons; we are not asserting that the likelihood on its own (rather than in a ratio) is
a good gauge of the relative sizes of deviations from a model.

The 11× 2 Table 4.3 displays the data for our first example, which has 22 entries in all.
Table 4.4 displays the model of homogeneous proportions for Table 4.3. The P-values for
Table 4.3 for the assumption that Table 4.4 gives the correct underlying distribution are

χ2 (X2): .0868
log–likelihood-ratio (G2): .0906

Freeman-Tukey/Hellinger (H2): .0959
negative log-likelihood: .0905

Frobenius (F 2): .00838

Please note that the P-value for the Frobenius distance is over an order of magnitude smaller
than the P-values for the classical statistics.

The 7 × 3 Table 4.7 displays the data for our second example, which has 21 entries in
all. Table 4.8 displays the model of homogeneous proportions for Table 4.7. The P-values
for Table 4.7 for the assumption that Table 4.8 gives the correct underlying distribution are

χ2 (X2): .145
log–likelihood-ratio (G2): .292

Freeman-Tukey/Hellinger (H2): .493
negative log-likelihood: .132

Frobenius (F 2): .0286
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Please note that the P-value for the Frobenius distance is over four times smaller than the
P-values for the classical statistics.

The 9× 2 Table 4.11 displays the data for our third example, which has 18 entries in all.
Table 4.12 displays the model of homogeneous proportions for Table 4.11. The P-values for
Table 4.11 for the assumption that Table 4.12 gives the correct underlying distribution are

χ2 (X2): .123
log–likelihood-ratio (G2): .138

Freeman-Tukey/Hellinger (H2): .157
negative log-likelihood: .114

Frobenius (F 2): .0344

Please note that the P-value for the Frobenius distance is over three times smaller than the
P-values for the classical statistics.

The 5× 3 Table 4.15 displays the data for our final example, which has 15 entries in all.
Table 4.16 displays the model of homogeneous proportions for Table 4.15. The P-values for
Table 4.15 for the assumption that Table 4.16 gives the correct underlying distribution are

χ2 (X2): .276
log–likelihood-ratio (G2): .171

Freeman-Tukey/Hellinger (H2): .0794
negative log-likelihood: .235

Frobenius (F 2): .199

In this example, none of the statistics produces a very small P-value; the smallest arises from
the Freeman-Tukey/Hellinger distance in this case.

Remark 4.4.3. Appropriate binning (or rebinning) to uniformize the frequencies associated
with the entries in the contingency-tables/cross-tabulations can mitigate the problem with
the classical statistics. Yet rebinning is a black art that is liable to improperly influence the
result of a significance test, and the usual data-dependent rebinning calls for Monte-Carlo
simulations to calculate P-values accurately anyways. Rebinning always requires careful
extra work. A principal advantage of the Frobenius distance is that it does not require any
rebinning; indeed, the Frobenius distance is most powerful without any rebinning. Note also
that optimally rebinning data such as that displayed in Table 4.3 can be very challenging.

Remark 4.4.4. The Frobenius distance is significantly more powerful than the classical
statistics for gauging the consistency of observed data with the assumption of homogeneity
in many of the examples of the present chapter. This may or may not be typical of most
applications; actually, we suspect that our last example — in which all the statistics perform
similarly — is the most representative. Even so, these examples illustrate that there are
important circumstances in which the Frobenius distance is much more powerful than the
classical statistics.
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Table 4.3: Results of polls in June 1983 for Danish parliamentary elections, from Chapter 4
of Andersen (1990)

Party Poll 1 Poll 2
A 416 (33.1%) 268 (38.9%)
B 45 (3.6%) 22 (3.2%)
C 338 (26.9%) 160 (23.2%)
E 13 (1.0%) 6 (0.9%)
F 131 (10.4%) 66 (9.6%)
K 18 (1.4%) 10 (1.5%)
M 47 (3.7%) 16 (2.3%)
Q 20 (1.6%) 8 (1.2%)
V 129 (10.3%) 92 (13.4%)
Y 22 (1.8%) 9 (1.3%)
Z 76 (6.1%) 32 (4.6%)
All 1255 (100.0%) 689 (100.0%)

Table 4.4: The model of homogeneous proportions for Table 4.3

Party Poll 1 Poll 2
A 441.6 (35.2%) 242.4 (35.2%)
B 43.3 (3.4%) 23.7 (3.4%)
C 321.5 (25.6%) 176.5 (25.6%)
E 12.3 (1.0%) 6.7 (1.0%)
F 127.2 (10.1%) 69.8 (10.1%)
K 18.1 (1.4%) 9.9 (1.4%)
M 40.7 (3.2%) 22.3 (3.2%)
Q 18.1 (1.4%) 9.9 (1.4%)
V 142.7 (11.4%) 78.3 (11.4%)
Y 20.0 (1.6%) 11.0 (1.6%)
Z 69.7 (5.6%) 38.3 (5.6%)
All 1255.0 (100.0%) 689.0 (100.0%)
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Table 4.5: Differences between the entries of Table 4.3 and the corresponding entries of
Table 4.4

Party Poll 1 Poll 2
A −25.6 25.6
B 1.7 −1.7
C 16.5 −16.5
E 0.7 −0.7
F 3.8 −3.8
K −0.1 0.1
M 6.3 −6.3
Q 1.9 −1.9
V −13.7 13.7
Y 2.0 −2.0
Z 6.3 −6.3
All 0.0 0.0

Table 4.6: The entries of Table 4.5 divided by the square roots of the corresponding entries
of Table 4.4

Party Poll 1 Poll 2
A −1.2 1.6
B 0.3 −0.4
C 0.9 −1.2
E 0.2 −0.3
F 0.3 −0.5
K −0.0 0.0
M 1.0 −1.3
Q 0.5 −0.6
V −1.1 1.5
Y 0.4 −0.6
Z 0.8 −1.0
All 0.0 0.0
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Table 4.7: Reasons for (or absence of) premature termination of the treatment of maniacal
patients in three groups from Bowden et al. (1994) (the three groups are those treated with
divalproex, those treated with lithium, and those “treated” with a placebo)

Reason Divalproex Lithium Placebo
Lack of efficacy 21 (30.4%) 12 (33.3%) 38 (51.4%)
Intolerance 4 (5.8%) 4 (11.1%) 2 (2.7%)
Recovered 3 (4.3%) 2 (5.6%) 2 (2.7%)
Noncompliance 1 (1.4%) 1 (2.8%) 3 (4.1%)
Another illness 0 (0.0%) 1 (2.8%) 0 (0.0%)
Administration 4 (5.8%) 2 (5.6%) 2 (2.7%)
Not terminated 36 (52.2%) 14 (38.9%) 27 (36.5%)
All 69 (100.0%) 36 (100.0%) 74 (100.0%)

Table 4.8: The model of homogeneous proportions for Table 4.7

Reason Divalproex Lithium Placebo
Lack of efficacy 27.4 (39.7%) 14.3 (39.7%) 29.4 (39.7%)
Intolerance 3.9 (5.6%) 2.0 (5.6%) 4.1 (5.6%)
Recovered 2.7 (3.9%) 1.4 (3.9%) 2.9 (3.9%)
Noncompliance 1.9 (2.8%) 1.0 (2.8%) 2.1 (2.8%)
Another illness 0.4 (0.6%) 0.2 (0.6%) 0.4 (0.6%)
Administration 3.1 (4.5%) 1.6 (4.5%) 3.3 (4.5%)
Not terminated 29.7 (43.0%) 15.5 (43.0%) 31.8 (43.0%)
All 69.0 (100.0%) 36.0 (100.0%) 74.0 (100.0%)

Table 4.9: Differences between the entries of Table 4.7 and the corresponding entries of
Table 4.8

Reason Divalproex Lithium Placebo
Lack of efficacy −6.4 −2.3 8.6
Intolerance 0.1 2.0 −2.1
Recovered 0.3 0.6 −0.9
Noncompliance −0.9 0.0 0.9
Another illness −0.4 0.8 −0.4
Administration 0.9 0.4 −1.3
Not terminated 6.3 −1.5 −4.8
All 0.0 0.0 0.0
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Table 4.10: The entries of Table 4.9 divided by the square roots of the corresponding entries
of Table 4.8

Reason Divalproex Lithium Placebo
Lack of efficacy −1.2 −0.6 1.6
Intolerance 0.1 1.4 −1.0
Recovered 0.2 0.5 −0.5
Noncompliance −0.7 0.0 0.6
Another illness −0.6 1.8 −0.6
Administration 0.5 0.3 −0.7
Not terminated 1.2 −0.4 −0.9
All 0.0 0.0 0.0

Table 4.11: Results for the 2012 Republican U.S. presidential nomination, from a CBS
News poll of November 6–10, 2011 (released November 11, 2011) and from a Pew Research
Center poll of November 9–11, 2011 (released November 17, 2011), as reconstructed from
percentages rounded to the nearest whole numbers (the original counts were not reported)
for Republican primary voters

Candidate CBS Pew
Michele Bachmann 15 (4.6%) 21 (5.1%)
Herman Cain 69 (21.2%) 103 (25.0%)
Newt Gingrich 57 (17.5%) 66 (16.0%)
Jon Huntsman 4 (1.2%) 4 (1.0%)
Ron Paul 19 (5.8%) 33 (8.0%)
Rick Perry 31 (9.5%) 37 (9.0%)
Mitt Romney 57 (17.5%) 91 (22.1%)
Rick Santorum 8 (2.5%) 8 (1.9%)
Do not know 65 (20.0%) 49 (11.9%)
All 325 (100.0%) 412 (100.0%)
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Table 4.12: The model of homogeneous proportions for Table 4.11

Candidate CBS Pew
Michele Bachmann 15.9 (4.9%) 20.1 (4.9%)
Herman Cain 75.8 (23.3%) 96.2 (23.3%)
Newt Gingrich 54.2 (16.7%) 68.8 (16.7%)
Jon Huntsman 3.5 (1.1%) 4.5 (1.1%)
Ron Paul 22.9 (7.1%) 29.1 (7.1%)
Rick Perry 30.0 (9.2%) 38.0 (9.2%)
Mitt Romney 65.3 (20.1%) 82.7 (20.1%)
Rick Santorum 7.1 (2.2%) 8.9 (2.2%)
Do not know 50.3 (15.5%) 63.7 (15.5%)
All 325.0 (100.0%) 412.0 (100.0%)

Table 4.13: Differences between the entries of Table 4.11 and the corresponding entries of
Table 4.12

Candidate CBS Pew
Michele Bachmann −0.9 0.9
Herman Cain −6.8 6.8
Newt Gingrich 2.8 −2.8
Jon Huntsman 0.5 −0.5
Ron Paul −3.9 3.9
Rick Perry 1.0 −1.0
Mitt Romney −8.3 8.3
Rick Santorum 0.9 −0.9
Do not know 14.7 −14.7
All 0.0 0.0
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Table 4.14: The entries of Table 4.13 divided by the square roots of the corresponding entries
of Table 4.12

Candidate CBS Pew
Michele Bachmann −0.2 0.2
Herman Cain −0.8 0.7
Newt Gingrich 0.4 −0.3
Jon Huntsman 0.3 −0.2
Ron Paul −0.8 0.7
Rick Perry 0.2 −0.2
Mitt Romney −1.0 0.9
Rick Santorum 0.4 −0.3
Do not know 2.1 −1.8
All 0.0 0.0

Table 4.15: Reactions to prior treatment with lithium (when treated before with lithium)
of maniacal patients in three groups from Bowden et al. (1994) (the three groups are those
treated with divalproex, those treated with lithium, and those “treated” with a placebo)

Reaction Divalproex Lithium Placebo

Effective and
tolerated

22 (31.9%) 16 (44.4%) 19 (25.7%)

Effective but
not tolerated

7 (10.1%) 0 (0.0%) 6 (8.1%)

Ineffective but
tolerated

19 (27.5%) 11 (30.6%) 31 (41.9%)

Ineffective and
not tolerated

6 (8.7%) 4 (11.1%) 5 (6.8%)

No prior lithium
treatment

15 (21.7%) 5 (13.9%) 13 (17.6%)

All 69 (100.0%) 36 (100.0%) 74 (100.0%)
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Table 4.16: The model of homogeneous proportions for Table 4.15

Reaction Divalproex Lithium Placebo

Effective and
tolerated

22.0 (31.8%) 11.5 (31.8%) 23.6 (31.8%)

Effective but
not tolerated

5.0 (7.3%) 2.6 (7.3%) 5.4 (7.3%)

Ineffective but
tolerated

23.5 (34.1%) 12.3 (34.1%) 25.2 (34.1%)

Ineffective and
not tolerated

5.8 (8.4%) 3.0 (8.4%) 6.2 (8.4%)

No prior lithium
treatment

12.7 (18.4%) 6.6 (18.4%) 13.6 (18.4%)

All 69.0 (100.0%) 36.0 (100.0%) 74.0 (100.0%)

Table 4.17: Differences between the entries of Table 4.15 and the corresponding entries of
Table 4.16

Reaction Divalproex Lithium Placebo
Effective and tolerated 0.0 4.5 −4.6
Effective but not tolerated 2.0 −2.6 0.6
Ineffective but tolerated −4.5 −1.3 5.8
Ineffective and not tolerated 0.2 1.0 −1.2
No prior lithium treatment 2.3 −1.6 −0.6
All 0.0 0.0 0.0
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Table 4.18: The entries of Table 4.17 divided by the square roots of the corresponding entries
of Table 4.16

Reaction Divalproex Lithium Placebo
Effective and tolerated 0.0 1.3 −0.9
Effective but not tolerated 0.9 −1.6 0.3
Ineffective but tolerated −0.9 −0.4 1.2
Ineffective and not tolerated 0.1 0.6 −0.5
No prior lithium treatment 0.6 −0.6 −0.2
All 0.0 0.0 0.0



Chapter 5

Goodness of fit for generalized linear
models

Previous chapters illustrate that the root-mean-square discrepancy can be more powerful
than canonical measures of discrepancy (such as the deviance or log–likelihood-ratio) when
testing the goodness-of-fit for distributional profile (such as tests of Hardy-Weinberg pro-
portions, and of homogeneity, independence, and symmetry in contingency-tables/cross-
tabulations). The present chapter illustrates that the root-mean-square can also be more
powerful in testing goodness-of-fit for generalized linear models such as that for the standard
Poisson regression, when the values of the dependent variables are not too small. When the
values of the dependent variables are very small, the discrete Kolmogorov-Smirnov approach
is preferable; furthermore, in such circumstances a suitable extension of the Kolmogorov-
Smirnov approach can increase statistical power by orders of magnitude, as this chapter
illustrates via the generalized linear model associated with standard logistic regression.

5.1 Poisson regression

To test the goodness of fit for a Poisson regression with n nonnegative integers y1, y2, . . . , yn
and the corresponding values of the independent variables, x1,1, x1,2, . . . , xm,n, the null
hypothesis is

H0 : y1, y2, . . . , yn are draws from independent Poisson distributions

with means µ̂1, µ̂2, . . . , µ̂n, respectively, (5.1)

where

ln(µ̂k) = β̂(0) +
m∑

j=1

β̂(j)xj,k (5.2)

for k = 1, 2, . . . , n, with the vector β being a nuisance parameter and β̂ its maximum-
likelihood estimate. (Interpreting this type of null hypothesis involves subtleties explicated
in the appendix.) This section illustrates testing the goodness of fit for a Poisson regression
via an example. The values of the observations y1, y2, . . . , yn for this example are not so
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small; if instead the counts were low, then the more sophisticated methods of Section 5.2
would be more appropriate.

We fit the data in Table 5.1 on n = 44 rivers from Sepkoski and Rex (1974). The
dependent variable for the regression is the number of species of mussels. The m = 9
independent variables are the area of the drainage basin, the nitrate concentration, the
hydronium concentration, the amount of residue left by dissolved solids after evaporation
(a proxy for the concentration of the solids in the original solution), all their logarithms
(including both the area and its logarithm improved the fit somewhat, as did including both
the concentrations and their logarithms), and the number of stepping stones “sv” defined
by Sepkoski and Rex (1974). For each of the 44 rivers, we modeled the logarithm of the
expected number of species as being a constant plus a linear combination of the independent
variables (assuming that the number of species follows a Poisson distribution), with the
constant and the coefficients in the linear combination being the same for all rivers. This is
standard Poisson regression; we used “glmfit” in Matlab for all calculations. The P-values
computed via 4 million Monte-Carlo simulations (as in Section 1.3) are

• deviance/log–likelihood-ratio (G2): .0216

• Freeman-Tukey/Hellinger distance: .0543

• χ2: .0059

• root-mean-square: .0028

Here the root-mean-square is the most powerful.

Remark 5.1.1. The deviance (or log–likelihood-ratio) is the following divergence of the
observations from the Poisson-regression model of (5.1) and (5.2):

g2 = 2

n∑

k=1

yk ln(yk/µ̂k). (5.3)

The Freeman-Tukey or Hellinger distance is

h2 = 4
n∑

k=1

(
√
yk −

√

µ̂k)
2. (5.4)

The χ2 divergence is

χ2 =
n∑

k=1

(yk − µ̂k)
2/µ̂k. (5.5)

The root-mean-square distance is

x =

√
√
√
√

n∑

k=1

(yk − µ̂k)2/n. (5.6)
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Table 5.1: Number of species of mussels, area of the drainage basin in square miles, nitrate
concentration in parts per million, hydronium concentration — in gram-ions — times 107

(pH is the negative of the base-10 logarithm of the hydronium concentration in gram-ions),
amount of residue left by dissolved solids after evaporation, and number of stepping stones
“sv” from Sepkoski and Rex (1974) for 44 rivers

species area nitrate hydronium residues steps
9 8440 0.8 4.0 57 21
8 5960 0.4 3.2 31 20
7 3510 0.6 2.5 65 19
6 1730 0.8 2.5 33 18
11 5020 2.6 6.3 78 17
8 425 8.4 20 120 14
7 1480 3.5 3.2 86 13
11 11500 1.3 2.5 75 12
11 2050 2.1 1.0 138 11
14 13500 0.8 .63 101 10
13 11100 8.7 3.2 122 9
11 27900 3.4 1.3 164 12
14 14400 3.7 0.5 156 11
9 2560 1.1 2.0 47 10
7 2790 0.7 2.0 59 9
12 9850 1.2 1.6 102 8
9 4870 1.2 1.6 99 7
10 9680 4.1 1.3 85 7
12 4150 1.8 1.0 82 6
15 5490 2.6 1.6 76 5
20 9000 1.3 2.0 78 4
10 2100 0.7 10 30 3
13 14400 0.5 3.2 57 3
21 17300 0.5 3.2 57 2
8 3440 0.8 1.6 53 1
21 10800 0.6 5.0 49 0
12 4360 0.1 1.6 55 1
18 14700 0.6 1.0 45 2
2 3720 0.2 32 29 3
4 1870 0.5 20 64 4
10 8800 0.9 1.0 391 5
7 3190 0.9 1.3 88 5
9 2260 0.8 0.5 257 5
6 657 0.2 1.6 105 5
3 521 1.6 3.2 520 5
8 719 0.6 0.4 171 5
9 2120 0.3 0.2 229 5
2 349 1.0 .25 461 6
13 10100 1.0 0.4 133 7
20 3010 0.8 1.6 81 8
33 19700 0.7 1.6 55 9
18 4770 1.1 1.0 57 10
11 1380 0.2 3.2 44 11
23 4270 0.1 2.0 61 11
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Remark 5.1.2. A popular model related to Poisson regression is the regression of a non-
negative integer-valued random variable Y on a positive real-valued X , with Y distributed
according to a Poisson distribution whose mean is proportional to X (that is, the conditional
distribution of Y given X is Poisson with mean proportional to X). More precisely, given
nonnegative integers y1, y2, . . . , ys corresponding to distinct positive real numbers x1, x2,
. . . , xs, we test the significance of assuming

H0 : y1, y2, . . . , ys are independent draws from the Poisson distributions

with means θ̂ · x1, θ̂ · x2, . . . , θ̂ · xs, respectively, (5.7)

where θ̂ is the maximum-likelihood estimate for the proportionality constant,

θ̂ =

∑s
k=1 yk∑s
k=1 xk

. (5.8)

This model is equivalent to tests for homogeneity of proportions in a two-row two-way
contingency-table/cross-tabulation for which the entries in the first row are y1, y2, . . . , ys,
and the entries in the second row are an extremely large multiple γ of x1, x2, . . . , xs. The
equivalence follows from the fact that the first entry of column k in such a table is distributed
according to the binomial distribution for a large number γ · xk + yk ≈ γ · xk of Bernoulli
trials, with the probability of success in each trial approaching EYk/(γ · xk) asymptotically
in the limit of large γ, where Yk is the random variable Y conditioned on X taking the value
xk. Such a binomial distribution for Yk converges to the Poisson distribution with mean EYk

in the limit of large γ. Homogeneity is the assumption that

EYj =
(yj + γxj)

∑s
k=1 yk∑s

k=1(yk + γxk)
(5.9)

for j = 1, 2, . . . , s, which simplifies in the limit of large γ via formula (5.8) to

EYj = θ̂ · xj (5.10)

for j = 1, 2, . . . , s, that is, the mean of Y is proportional to X .
This type of regression is of interest in testing for the homogeneity of disease incidence or

prevalence (assessing whether the incidence or prevalence depends on geographic or ethnic
factors, for example). Further information about tests for homogeneity is available, for
example, in Chapter 4. In particular, the tests of Chapter 4 are appropriate even when the
diseased populations tabulated in the first row are not necessarily much smaller than the
unafflicted populations tabulated in the second row; in general the distribution of an entry
in the first row is binomial and becomes Poisson only when the total populations are much
greater than the afflicted populations.

5.2 Logistic regression

Subtleties arise in testing goodness-of-fit for regressions (including logistic regression) in
which the values of the dependent variables predominantly are small nonnegative integers
(so-called “low counts”). Explicitly accounting for all applicable independent variables, even
when the model being tested does not, is critical. This can increase statistical power by
orders of magnitude. The connection with variable and model selection is important.
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5.2.1 Introduction

Testing goodness-of-fit for logistic regression has received a remarkable amount of attention,
with contributions from Hosmer and Lemeshow (1980), Beran and Millar (1991), Su and
Wei (1991), Royston (1992), Stute and Zhu (2002), Weitzen et al. (2004), Pan and Lin
(2005), and Allison (2012), among many others; see, for example, the references of Hosmer
and Lemeshow (2000). The discussion in the present section is closely related. However,
even when computing exact P-values as in earlier works, as summarized in the addendum,
Section 5.2.4, omissions in the standard tests can reduce the standards’ statistical power
by orders of magnitude. The present, introductory subsection addresses the omissions. For
details, see Section 5.2.2 or the concluding remarks (Section 5.2.3).

A representative use of logistic regression is to model the absence (0) or presence (1) of
coronary heart disease — resulting in a “dependent variable” for coronary heart disease that
is binary/dichotomous (meaning that the observed values are zeros and ones). The regression
predicts the dependent variable via “independent variables” such as age, cholesterol level,
diastolic and systolic blood pressure, and others listed in Section 5.2.2.4 below.

To be precise, the null hypothesis for a logistic regression of a binary/dichotomous random
variable Yk on real numbers xj,k (with k = 1, 2, . . . , n, and j = 1, 2, . . . , m ≪ n), given
observations y1, y2, . . . , yn of Y1, Y2, . . . , Yn, respectively, is

H0 : y1, y2, . . . , yn are draws from independent Bernoulli distributions

with means µ̂1, µ̂2, . . . , µ̂n, respectively, (5.11)

where

logit(µ̂k) = β̂(0) +

ℓ∑

j=1

β̂(j)xj,k (5.12)

for k = 1, 2, . . . , n; here the vector β is a nuisance parameter, β̂ is its maximum-likelihood
estimate, ℓ is a nonnegative integer no greater than m, and

logit(p) = ln

(
p

1− p

)

(5.13)

is the logarithm of the odds p/(1 − p); needless to say, altering the base of the logarithm
just rescales β. (Interpreting this type of null hypothesis involves subtleties explicated in the
appendix.) In this general formulation, the number ℓ of terms in the sum from (5.12) may
be less than the total number m of independent variables (while m itself should be signif-
icantly less than n in order to avoid overfitting); nevertheless, accounting for all applicable
independent variables when testing goodness-of-fit is very important, as discussed shortly
and further detailed below in Section 5.2.2.1.

Goodness of fit gauges the consistency of the given observed values with the model
assumed under the null hypothesis. The observed values y1, y2, . . . , yn are zeros and ones, so
probing their distribution requires aggregating or accumulating these very low counts, just as
in the case of draws from continuous probability densities (the continuous case requires use
of cumulative distribution functions, probability density estimation, Neyman smooth tests,
or something similarly aggregative). A cumulative measure of the distance between the
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observed data and the model assumed under the null hypothesis is the discrete Kolmogorov-
Smirnov statistic detailed in Chapter 2, namely,

d = max
1≤j≤n

∣
∣
∣
∣
∣

j
∑

k=1

yσk
−

j
∑

k=1

µ̂σk

∣
∣
∣
∣
∣
= max

1≤j≤n

∣
∣
∣
∣
∣

j
∑

k=1

rσk

∣
∣
∣
∣
∣
, (5.14)

where the ordering σ is a permutation of the integers 1, 2, . . . , n, and the residual rk is

rk = yk − µ̂k (5.15)

for k = 1, 2, . . . , n. Please note that µ̂1, µ̂2, . . . , µ̂n are from (5.12); (5.12) is similar to (5.16)
below, but (5.16) influences only the permutation σ.

Critically, the ordering σ in (5.14) should take into account all applicable independent
variables, not just those included in the model of (5.11) and (5.12). If a suitable ordering
for the observations is not known a priori, there is a good substitute, namely to choose a
permutation σ of the integers 1, 2, . . . , n such that µ̃σ1 ≤ µ̃σ2 ≤ · · · ≤ µ̃σn

, replacing (5.12)
with a fit to all the data via

logit(µ̃k) = β̃(0) +

m∑

j=1

β̃(j)xj,k (5.16)

for k = 1, 2, . . . , n (notice that the sum here runs up to m, not just ℓ), where µ̃1, µ̃2, . . . ,
µ̃n are the estimated means of the postulated independent Bernoulli distributions. That is,
this natural ordering sorts based on the estimated means µ̃1, µ̃2, . . . , µ̃n when estimated
using all applicable independent variables, not using only the ℓ terms appearing in the sum
from (5.12). This ordering incorporates information from all values x1,1, x1,2, . . . , xm,n, as
these values influence the estimated values µ̃1, µ̃2, . . . , µ̃n in (5.16).

Goodness of fit is gauged via the “P-value.” As reviewed in the addendum, Section 5.2.4,
the P-value associated with d defined in (5.14) is the proportion of Monte-Carlo simulations
for which the distance d is greater than or equal to the distance d for the original, observed
data, in the limit of a large number of simulations, each simulated according to (5.11)
and (5.12). If a P-value is very small, then we can be confident that the model, given
in (5.11) and (5.12), is not consistent with the data, even when allowing for the expected
statistical fluctuations.

The next subsection illustrates that the above approach can be very powerful. This
introductory subsection will now conclude with incidental remarks about other approaches:

Remark 5.2.1. If we replace the natural ordering (discussed above) with a permutation σ
satisfying rσ1 ≤ rσ2 ≤ · · · ≤ rσn

, then (5.14) simplifies to

d =
1

2

n∑

k=1

|rk|. (5.17)

Maximizing (5.14) over all permutations σ of the integers 1, 2, . . . , n also yields (5.17). The
simplification to (5.17) is due to Hoeffding (1965) (see the top of page 396 in Hoeffding’s
article); this follows from the fact that the sum of the residuals is 0, that is,

∑n
k=1 rk = 0

(the sum of the residuals is 0 on account of the constant term β̂(0) in (5.12)).
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Remark 5.2.2. An often appealing alternative to the Kolmogorov-Smirnov statistic defined
in (5.14) is the Kuiper statistic

d = max
1≤j≤n

j
∑

k=1

rσk
− min

1≤j≤n

j
∑

k=1

rσk
. (5.18)

Under the ordering for which the permutation σ satisfies rσ1 ≤ rσ2 ≤ · · · ≤ rσn
, (5.18)

simplifies to (5.14) and hence to (5.17), since
∑n

k=1 rσk
=
∑n

k=1 rk = 0, while this choice of

ordering ensures
∑j

k=1 rσk
≤ 0 for all j = 1, 2, . . . , n. In fact, (5.18) simplifies to (5.14) and

hence to (5.17), for any permutation σ such that rσk+1
≤ rσk+2

≤ · · · ≤ rσn
≤ rσ1 ≤ rσ2 ≤

· · · ≤ rσk
for some positive integer k. Indeed, the value of (5.18) for such a permutation

is the same as for a permutation satisfying rσ1 ≤ rσ2 ≤ · · · ≤ rσn
; this invariance is the

principal appeal of the Kuiper statistic, as discussed by Stephens (1970) and Section 14.3.4
of Press et al. (2007).

Remark 5.2.3. In this remark, we consider the case when the vectors (x1,k, x2,k, . . . , xℓ,k)
are different for different values of k. This is the case for the above example of modeling the
absence or presence of coronary heart disease, provided that no two subjects have exactly the
same age, cholesterol level, diastolic and systolic blood pressure, and so on. The deviance
(also known as the log–likelihood ratio or “G2”) is then

g2 = −2

n∑

k=1

(

yk ln(µ̂k) + (1− yk) ln(1− µ̂k)
)

= −2
∑

yk=0

ln(1− µ̂k)− 2
∑

yk=1

ln(µ̂k), (5.19)

where µ̂k is the maximum-likelihood estimate of the mean for the Bernoulli distribution
producing yk under the model; µ̂k is defined in (5.12). If µ̂k is small whenever yk = 0 and
1 − µ̂k is small whenever yk = 1 (that is, the absolute residual |rk| = |yk − µ̂k| is small for
k = 1, 2, . . . , n), then

−
∑

yk=0

ln(1− µ̂k)−
∑

yk=1

ln(µ̂k) ≈
∑

yk=0

µ̂k +
∑

yk=1

(1− µ̂k). (5.20)

Moreover,

∑

yk=0

µ̂k +
∑

yk=1

(1− µ̂k) = −
∑

yk=0

rk +
∑

yk=1

rk =
∑

yk=0

|rk|+
∑

yk=1

|rk| =
n∑

k=1

|rk|, (5.21)

where rk = yk − µ̂k is the residual. Combining (5.19), (5.20), and (5.21) yields that

g2 ≈ 2
n∑

k=1

|rk| (5.22)

if the absolute residuals |r1|, |r2|, . . . , |rn| are small. Please note that the right-hand side
of (5.22) is exactly four times the right-hand side of (5.17). The deviance g2 is not terribly
helpful for gauging goodness-of-fit with logistic regression, as the deviance is a deterministic
function of the estimated means of the postulated Bernoulli distributions — the deviance
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depends on the observed data only through dependence on the estimated means. In fact,
McCullagh and Nelder (1989) and others have shown that

g2 = 2
n∑

k=1

µ̂k ln

(
1− µ̂k

µ̂k

)

− 2
n∑

k=1

ln(1− µ̂k) (5.23)

when the vectors (x1,k, x2,k, . . . , xℓ,k), with k = 1, 2, . . . , n, are distinct; please notice that the
observations y1, y2, . . . , yn do not appear explicitly in the right-hand side of (5.23) (though
of course the estimated means µ̂1, µ̂2, . . . , µ̂n do depend on the observations y1, y2, . . . , yn).

Remark 5.2.4. The tests of Hosmer and Lemeshow (1980, 2000) replace the Kolmogorov-
Smirnov statistic d defined in (5.14) with χ2 for the model of binomial distributions cor-
responding to quantiles (typically the deciles) for the estimated means of the postulated
Bernoulli distributions. For example, if n is divisible by 10 (for notational convenience),
then we could replace d defined in (5.14) with

hℓ =

10∑

k=1

(nk − η̂k)
2

η̂k(1− 10η̂k/n)
, (5.24)

where nk is the sum of the observed values y1, y2, . . . , yn from the kth group (that is, nk is the
number of values from the kth group that are equal to 1), grouping according to the deciles of
the estimated means µ̂1, µ̂2, . . . , µ̂n, and where η̂k is the sum of the estimated means µ̂1, µ̂2,
. . . , µ̂n in the kth decile (that is, in the kth group). Notice that the denominator in (5.24)
would be the expected value of the numerator if nk were drawn from a binomial distribution
whose maximal possible value is n/10 and whose mean is η̂k (conditional on knowing η̂k). This
approach of Hosmer and Lemeshow (1980, 2000) is similar to the cumulative (Kolmogorov-
Smirnov) approach detailed in the present section, but involves explicit binning. Allison
(2012) criticizes the binning and provides references to many other critiques.

5.2.2 Examples

5.2.2.1 Overview

This subsection introduces two thought experiments, as well as their illustration below via the
computer-assisted analysis of three real data sets. The statistic detailed in Section 5.2.1 —
Kolmogorov-Smirnov ordered based on µ̃ — far outperforms the standard statistic described
in Remark 5.2.4 — Hosmer-Lemeshow ordered based on µ̂. Whereas µ̂ considers only the ℓ
summands in (5.12), µ̃ takes into account all m independent variables in (5.16).

Accounting for all applicable independent variables when testing goodness-of-fit is critical;
using only the independent variables included in (5.12) is not always sufficient. Consider,
for example, the case when ℓ = 0 in (5.12), that is, when the sum in (5.12) is absent.
The resulting logistic regression amounts to regressing y1, y2, . . . , yn against a constant; the
estimated means in (5.12) are then all the same, that is, µ̂1 = µ̂2 = · · · = µ̂n. Unless nearly all
y1, y2, . . . , yn are equal, the fit cannot possibly be good, yet no standard test for goodness of
fit can detect the poor fit. Indeed, any ordering for the observations must be random with the
standard tests, since the estimated means are all the same, µ̂1 = µ̂2 = · · · = µ̂n. The standard
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tests consider only the independent variables appearing in (5.12) — surely not enough when
ℓ = 0. Without substantial information from independent variables to inform the ordering
and the associated accumulation or aggregation, the data cannot possibly invalidate the
tested model. The values of y1, y2, . . . , yn (each 0 or 1) are not informative if their ordering
is totally random. The data can invalidate the tested model only when there are variables
that can inform the ordering, possibly including variables not included in the tested model.

Similarly, if ℓ = 1 and the values x1,1, x1,2, . . . , x1,n are drawn independently and with
identical distributions (i.i.d.) from the uniform distribution over (0, 1), with no relation to
y1, y2, . . . , yn, then the fit via (5.12) cannot possibly be good. Yet, standard tests for
goodness of fit (which consider only those independent variables appearing in (5.12), not
any “extras” from the rest of the data set) cannot detect the poor fit. Moreover, such
problems are not limited to thought experiments, as Hosmer et al. (1997), Weitzen et al.
(2004), and the remainder of the present subsection illustrate via the analysis of real data.

The following examples analyze several data sets, referring to the test statistic detailed in
Section 5.2.1 as Kolmogorov-Smirnov ordered based on µ̃, and we recommend Kolmogorov-
Smirnov ordered based on µ̃ for general-purpose use; the standard statistic (detailed in
Remark 5.2.4) is Hosmer-Lemeshow grouped based on µ̂ (not µ̃), which performs relatively
poorly in our tests. The other statistics mentioned in the tables below (namely, G2, Freeman-
Tukey, χ2, and the Euclidean distance or root-mean-square) are not really relevant to testing
goodness-of-fit for logistic regression, as they do not depend on the ordering; the tables
include their P-values only for completeness, illustrating their low statistical power. As
always, if any of the P-values is very small, then we can have confidence that the model
in (5.11) and (5.12) does not yield a good fit; that is, we can have confidence that the
observed data is not consistent (up to the expected statistical fluctuations) with assuming
(5.11) and (5.12).

We used Matlab’s “glmfit” for all calculations, incorporating the addendum, Section 5.2.4,
to compute all P-values; Remark 1.3.2 discusses the resulting accuracy. We calculated each
P-value via 4,000,000 Monte-Carlo simulations; running so many simulations is not really
necessary.

5.2.2.2 Data from Finney (1947)

Table 5.3 displays the P-values for several goodness-of-fit tests applied to the classic data
set of Finney (1947). Table 5.2 displays the data set, which consists of n = 39 observations
of a dependent variable together with 2 independent variables.

Table 5.3 reports on four experiments. First, we set ℓ = 0, i.e., omit the sum in (5.12)
entirely, while retaining m = 2 in (5.16). Second, we set ℓ = 1 and generate a new, additional
independent variable, drawing x1,1, x1,2, . . . , x1,n i.i.d. from the uniform distribution over
(0, 1). Third, we discard the extra random independent variable, retaining both original
independent variables, with ℓ = 2 and m = 2. Fourth, we again include the extra random
independent variable (makingm = 2+1), but do not include it in the tested model (so ℓ = 2).

For the Hosmer-Lemeshow statistics of Remark 5.2.4, we consider different groupings. In
the first, with 3 groups in all, each group contains 13 observations. In the second, with 5
groups in all, the initial 4 groups contain 8 observations each, and the last contains 7.
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5.2.2.3 Data from Hosmer and Lemeshow (2000)

Table 5.4 displays the P-values for several goodness-of-fit tests applied to the “UIS” data
set of Hosmer and Lemeshow (2000). This data set consists of n = 575 observations of a
dependent variable “dfree” together with 11 independent variables “age,” “beck,” “ndrgfp1,”
“ndrgfp2,” “ivhx 2,” “ivhx 3,” “race,” “treat,” “site,” “ageXndrgfp1,” and “raceXsite”
(these include transformations and products of the original variables “dfree,” “age,” “beck,”
“ndrugtx,” “ivhx,” “race,” “treat,” and “site,” as detailed in Chapter 4 of Hosmer and
Lemeshow (2000)). For the Hosmer-Lemeshow statistics of Remark 5.2.4, we aggregate the
data into 10 groups, with the initial 9 containing 58 observations each, and the last containing
53.

Table 5.4 reports on five experiments. First, we set ℓ = 0, that is to say, omit the sum
in (5.12) entirely, while retaining m = 11 in (5.16). Second, we set ℓ = 1 and generate
a new, additional independent variable, drawing x1,1, x1,2, . . . , x1,n i.i.d. from the uniform
distribution over (0, 1). Third, we discard the extra random independent variable, retaining
the original m = 11, and set ℓ = 9, taking the independent variables in the regression to be
“age,” “beck,” “ndrgfp1,” “ndrgfp2,” “ivhx 2,” “ivhx 3,” “race,” “treat,” and “site” (these
are all those not involving products of other variables). Fourth, we include all 11 original
independent variables, with both ℓ = 11 and m = 11. Fifth, we again include the extra
random independent variable (making m = 11+1), but do not include it in the tested model
(so ℓ = 11).

5.2.2.4 Data from Kleinbaum and Klein (2010)

Table 5.5 displays the P-values for several goodness-of-fit tests applied to the “Evans County”
data set of Kleinbaum and Klein (2010). This data set consists of n = 609 observations of
a dependent variable “chd” together with 10 independent variables “age,” “cat,” “chl,”
“dbp,” “ecg,” “hpt,” “sbp,” “smk,” “catXchl,” and “catXhpt” (these include products of
the original variables “chd,” “age,” “cat,” “chl,” “dbp,” “ecg,” “hpt,” “sbp,” and “smk,” as
in model “EC4” from Chapter 9 of Kleinbaum and Klein (2010)). For the Hosmer-Lemeshow
statistics of Remark 5.2.4, we aggregate the data into 10 groups, with the initial 9 containing
61 observations each, and the last containing 60.

Table 5.5 reports the results of five experiments. First, we set ℓ = 0, i.e., omit the sum
in (5.12) entirely, while retaining m = 10 in (5.16). Second, we set ℓ = 1 and generate
a new, additional independent variable, drawing x1,1, x1,2, . . . , x1,n i.i.d. from the uniform
distribution over (0, 1). Third, we discard the extra random independent variable, retaining
the original m = 10, and set ℓ = 6, taking the independent variables in the regression to be
“age,” “cat,” “chl,” “ecg,” “hpt,” and “smk” — those included for model “EC3” in Chapter 9
of Kleinbaum and Klein (2010). Fourth, we include all 10 original independent variables,
with both ℓ = 10 and m = 10. Fifth, we again include the extra random independent
variable (making m = 10 + 1), but do not include it in the tested model (so ℓ = 10).
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Table 5.2: x1,k, x2,k, and yk for k = 1, 2, . . . , 39, from Finney (1947); Finney (1947) refers
to y as “response”

x1 x2 y
1.57 0.92 1
1.54 1.04 1
1.10 1.40 1
0.88 1.18 1
0.90 1.51 1
0.85 1.54 1
0.78 0.88 0
1.04 1.23 0
0.95 0.88 0
0.95 0.65 0
0.90 0.76 0
0.74 1.44 0
0.78 1.48 0
1.15 1.37 1
0.88 1.57 1
1.36 1.21 1
1.51 1.20 1
0.93 1.15 1
1.23 1.03 0
1.26 1.26 1
0.60 1.30 0
0.98 1.13 0
1.13 1.13 0
1.18 1.13 0
1.20 1.25 1
0.78 1.18 0
1.26 1.18 1
0.98 1.28 0
1.28 0.98 1
1.20 0.60 0
1.43 0.88 1
1.37 0.48 0
1.04 1.26 0
1.04 1.34 1
1.08 1.30 1
0.90 1.52 1
0.98 1.28 0
0.88 1.28 0
1.11 1.21 1
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Table 5.3: P-values for the data set of Finney (1947) (see Table 5.2); n = 39

ℓ = 0;1

m = 2
ℓ = 1;2

m = 2+1
ℓ = 2;3

m = 2
ℓ = 2;4

m = 2+1

Kolmogorov-Smirnov
(ordering based on µ̃)

.0000003† .0000003† .0075 .039

Kolmogorov-Smirnov
(ordering based on µ̂)

.249 .452 .0075 .0075

Kolmogorov-Smirnov
(ordering based on r)

.134 .053 .355 .355

G2 (the deviance, log–
likelihood-ratio, . . . )

.248 .053 .324 .324

Freeman-Tukey
(Hellinger distance)

.517 .239 .250 .250

χ2 (sum of the squares
of Pearson residuals)

.385 .405 .182 .182

Euclidean distance or
root-mean-square

.236 .053 .393 .393

Hosmer-Lemeshow
(with 3 groups from µ̃)

.582 .248 .107 .065

Hosmer-Lemeshow
(with 3 groups from µ̂)

.590 .298 .107 .107

Hosmer-Lemeshow
(with 5 groups from µ̃)

.658 .324 .787 .695

Hosmer-Lemeshow
(with 5 groups from µ̂)

.597 .201 .787 .787

1i.e., omitting the sum in (5.12) entirely, while retaining the original m = 2
2i.e., with an extra independent variable, with x1,1, x1,2, . . . , x1,n drawn i.i.d. from U(0, 1)
3i.e., including both original independent variables
4i.e., with an extra independent variable, with x3,1, x3,2, . . . , x3,n drawn i.i.d. from U(0, 1),
but without including the extra variable in the model being tested (while still including both
original independent variables)
†in these cases, only 1 simulation (out of 4,000,000) produced a Kolmogorov-Smirnov statistic
at least as large as that for the original, observed data
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Table 5.4: P-values for the “UIS” data set of Hosmer and Lemeshow (2000); n = 575

ℓ = 0;1

m = 11
ℓ = 1;2

m = 11+1
ℓ = 9;3

m = 11
ℓ = 11;4

m = 11
ℓ = 11;5

m = 11+1

Kolmogorov-Smirnov
(ordering based on µ̃)

.00001 .00001 .0049 .736 .861

Kolmogorov-Smirnov
(ordering based on µ̂)

.609 .276 .115 .736 .736

Kolmogorov-Smirnov
(ordering based on r)

.486 .484 .334 .319 .319

G2 (the deviance, log–
likelihood-ratio, . . . )

.516 .482 .343 .311 .311

Freeman-Tukey
(Hellinger distance)

.516 .478 .314 .286 .286

χ2 (sum of the squares
of Pearson residuals)

.473 .734 .740 .300 .300

Euclidean distance or
root-mean-square

.507 .484 .317 .319 .319

Hosmer-Lemeshow
(for deciles of µ̃)

.023 .017 .991 .673 .594

Hosmer-Lemeshow
(for deciles of µ̂)

.688 .249 .781 .673 .673

1i.e., omitting the sum in (5.12) entirely, while retaining the original m = 11
2i.e., with an extra independent variable, with x1,1, x1,2, . . . , x1,n drawn i.i.d. from U(0, 1)
3i.e., taking the independent variables in the regression to be “age,” “beck,” “ndrgfp1,”
“ndrgfp2,” “ivhx 2,” “ivhx 3,” “race,” “treat,” and “site” (these are all those not involving
products of other variables), while retaining the original m = 11
4i.e., including all 11 original independent variables
5i.e., with an extra independent variable, with x12,1, x12,2, . . . , x12,n drawn i.i.d. from U(0, 1),
but without including the extra variable in the model being tested (while still including all
11 original independent variables)
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Table 5.5: P-values for the “Evans County” data set of Kleinbaum and Klein (2010); n = 609

ℓ = 0;1

m = 10

ℓ = 1;2

m = 10+1
ℓ = 6;3

m = 10
ℓ = 10;4

m = 10

ℓ = 10;5

m = 10+1

Kolmogorov-Smirnov
(ordering based on µ̃)

≤ .0000003† ≤ .0000003† ≤ .0000003† .193 .328

Kolmogorov-Smirnov
(ordering based on µ̂)

.357 .905 .738 .193 .193

Kolmogorov-Smirnov
(ordering based on r)

.471 .474 .431 .418 .418

G2 (the deviance, log–
likelihood-ratio, . . . )

.519 .472 .412 .357 .357

Freeman-Tukey
(Hellinger distance)

.485 .472 .404 .405 .405

χ2 (sum of the squares
of Pearson residuals)

.354 .427 .759 .010 .010

Euclidean distance or
root-mean-square

.514 .474 .431 .451 .451

Hosmer-Lemeshow
(for deciles of µ̃)

≤ .0000003† .000002 .995 .237 .186

Hosmer-Lemeshow
(for deciles of µ̂)

.651 .585 .822 .237 .237

1i.e., omitting the sum in (5.12) entirely, while retaining the original m = 10
2i.e., with an extra independent variable, with x1,1, x1,2, . . . , x1,n drawn i.i.d. from U(0, 1)
3i.e., taking the independent variables in the regression to be “age,” “cat,” “chl,” “ecg,”
“hpt,” and “smk” — those included for model “EC3” in Chapter 9 of Kleinbaum and Klein
(2010) — while retaining the original m = 10
4i.e., including all 10 original independent variables
5i.e., with an extra independent variable, with x11,1, x11,2, . . . , x11,n drawn i.i.d. from U(0, 1),
but without including the extra variable in the model being tested (while still including all
10 original independent variables)
†in these cases, no simulations (out of 4,000,000) produced a test statistic at least as large
as that for the original, observed data
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5.2.3 Conclusion

The discrete Kolmogorov-Smirnov test with an ordering based on all applicable independent
variables produces P-values that are orders of magnitude better than those for the standards
(such as the usual Hosmer-Lemeshow test) in many circumstances for which the model
clearly fits very poorly. In particular, this happens if the model omits significant explanatory
variables that are in the given data. The Kolmogorov-Smirnov approach is not the only
possibility, but the above examples (both the thought experiments and the real data analyses)
argue strongly in favor of aggregating based on all applicable independent variables, not based
on just those incorporated into the model being tested. In fact, this is a strong argument
relevant to testing goodness-of-fit for any regression with low counts, including the simplest
logistic regression that is the focus of the present section.

5.2.4 Addendum: Computation of P-values

This subsection briefly describes Monte-Carlo simulations yielding estimates for P-values;
the standard errors of the estimates are inversely proportional to the square root of the
number of simulations conducted. The P-values being estimated are exact for any number
n of observations and also have desirable properties in the limit that n is large, as detailed
in the appendix. To calculate a P-value, we first estimate β from the given observations,
obtaining β̂ in (5.12) and β̃ in (5.16), and then calculate the test statistic (such as d in (5.14)).
We next run many simulations. To conduct a single simulation, we perform the following
three-step procedure:

1. we generate n independent draws according to (5.11) and (5.12),

2. we fit the parameter β from the data generated in Step 1, both using all m variables

in (5.16) and using only those ℓ in (5.12), obtaining new estimates ˜̃β and ˆ̂β, respectively,
and

3. we calculate the test statistic (such as the discrete Kolmogorov-Smirnov distance d)
using the new y1, y2, . . . , yn generated in Step 1 and new estimates ˆ̂µ1, ˆ̂µ2, . . . , ˆ̂µn,
determining the ordering (that is, the permutation σ from Section 5.2.1) for the statistic
by sorting ˜̃µ1, ˜̃µ2, . . . , ˜̃µn, with

logit(ˆ̂µk) =
ˆ̂β
(0)

+
ℓ∑

j=1

ˆ̂β
(j)

xj,k (5.25)

logit(˜̃µk) =
˜̃β
(0)

+

m∑

j=1

˜̃β
(j)
xj,k (5.26)

for k = 1, 2, . . . , n, where ˜̃β and ˆ̂β are the estimates calculated in Step 2 from the
data generated in Step 1.

After conducting many such simulations, we may estimate the P-value as the fraction of
the statistics calculated in Step 3 that are greater than or equal to the statistic calculated
from the given data. As detailed in Remark 1.3.2, the accuracy of the estimated P-value is
inversely proportional to the square root of the number of simulations conducted.



Chapter 6

Asymptotic P-values without nuisance
parameters

The present chapter provides efficient black-box algorithms for calculating, in the limit of
large numbers of draws, the asymptotic P-values for the root-mean-square statistic discussed
in the previous chapters. As observed in the previous chapters, computing the exact P-values
via Monte-Carlo simulation is often feasible, too.

6.1 Recap

A basic task in statistics is to ascertain whether a given set of observations does not arise as
independent and identically distributed (i.i.d.) draws from a specified probability distribution
(this specified distribution is known as the “model”). We consider the case in which the draws
are discrete random variables, taking values in a finite set. In accordance with the standard
terminology, we will refer to the possible values of the discrete random variables as “bins”
(“categories,” “cells,” and “classes” are common synonyms for “bins”).

A natural approach to ascertaining whether the draws were not taken i.i.d. from the spec-
ified probability distribution uses a root-mean-square statistic. To construct this statistic, we
estimate the probability distribution over the bins using the given draws, and then measure
the root-mean-square difference between this empirical distribution and the specified model
distribution; see, for example, Rao (2002), page 123 of Varadhan et al. (1974), or Section 6.2
below. If the draws do in fact arise from the specified model, then with high probability this
root-mean-square is not large. Thus, if the root-mean-square statistic is large, then we can
be confident that the observations do not arise as i.i.d. draws from the specified probability
distribution.

Let us denote by x the value of the root-mean-square for the given draws; let us denote
by X the root-mean-square statistic constructed for different draws that definitely are in
fact taken i.i.d. from the specified model distribution. Then, the P-value is defined to be the
probability that X ≥ x (viewing X — but not x — as a random variable).

Unfortunately, the P-values for the simple root-mean-square statistic are different for
different model probability distributions. To avoid this seeming inconvenience (at least
asymptotically), one may weight the average in the root-mean-square by the reciprocals of
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the model probabilities associated with the various bins, obtaining the classic χ2 statistic;
see, for example, Pearson (1900) or Remark 6.2.1 below. However, with the now widespread
availability of computers, direct use of the root-mean-square statistic has become feasible
and convenient. The present chapter provides efficient black-box algorithms for computing
the P-values for any specified model distribution, in the limit of large numbers of draws.
Calculating P-values for small numbers of draws via Monte Carlo can also be practical, as
illustrated in previous chapters.

The simple statistic described above would seem to be more natural than the standard χ2

statistic of Pearson (1900), is typically easier to use (since it does not require any rebinning of
data), and is more powerful in many circumstances. Even more powerful is the combination of
the root-mean-square statistic and an asymptotically equivalent variation of the χ2 statistic,
such as the log–likelihood-ratio or “G2” statistic; the log–likelihood-ratio and χ2 statistics
are asymptotically equivalent when the draws arise from the model, while the log–likelihood-
ratio can be more powerful than χ2 for small numbers of draws (see, for example, Chapter 1).
The rest of the present chapter has the following structure: Section 6.2 details the statistic
discussed above, expressing the P-values for the associated goodness-of-fit test in a form
suitable for computation. Section 6.3 discusses the most involved part of the computation
of the P-values, computing the cumulative distribution function of the sum of the squares
of independent centered Gaussian random variables. Section 6.4 summarizes the method for
computing the P-values of the root-mean-square statistic. Section 6.5 applies the method to
several examples.

6.2 The sum-of-squares statistic

This section details the root-mean-square discussed briefly in Section 6.1, and determines its
probability distribution in the limit of large numbers of draws, assuming that the draws do
in fact come from the specified model. The distribution determined in this section yields the
P-values (in the limit of large numbers of draws): given a value x for the root-mean-square
statistic constructed from observations coming from an unknown distribution, the P-value
that the observations do not arise as i.i.d. draws from the specified model is the probability
that the root-mean-square statistic is greater than or equal to x when constructed from i.i.d.
draws that do come from the model distribution.

To begin, we set notation and form the statistic X to be analyzed. Given m bins,
numbered 1, 2, . . . , m, we denote by p

(1)
0 , p

(2)
0 , . . . , p

(m)
0 the probabilities associated with

the respective bins under the specified model; of course,
∑m

j=1 p
(j)
0 = 1. To obtain a draw

conforming to the model, we select at random one of the m bins, with probabilities p
(1)
0 , p

(2)
0 ,

. . . , p
(m)
0 . We perform this selection independently n times. For j = 1, 2, . . . , m, we denote

by Y (j) the fraction of times that we choose bin j (that is, Y (j) is the number of times that
we choose bin j, divided by n); obviously,

∑m
j=1 Y

(j) = 1. We define Xj to be
√
n times the

difference of Y (j) from its expected value, that is,

Xj =
√
n (Y (j) − p

(j)
0 ) (6.1)
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for j = 1, 2, . . . , m. Finally, we form the statistic

X =

m∑

j=1

X2
j , (6.2)

and now determine its distribution in the limit of large n. X is the square of the root-

mean-square statistic
√
∑m

j=1(nY
(j) − np

(j)
0 )2/n. Since the square root is a monotonically

increasing function, the P-values are the same whether determined via X or via
√
X ; for

convenience, we focus on X below.

Remark 6.2.1. The classic χ2 test for goodness-of-fit of Pearson (1900) replaces (6.2) with
the statistic

χ2 =

m∑

j=1

X2
j

p
(j)
0

, (6.3)

where X1, X2, . . . , Xm are the same as in (6.1) and (6.2). χ2 defined in (6.3) has the
advantage that its P-values are the same for every model distribution, independent of the
values of p

(1)
0 , p

(2)
0 , . . . , p

(m)
0 , in the limit of large numbers of draws. In contrast, using X

defined in (6.2) requires computing its P-values anew for every different model.

The multivariate central limit theorem shows that the joint distribution of X1, X2, . . . ,
Xm converges in distribution as n → ∞, with the limiting generalized probability density
proportional to

exp

(

−
m∑

j=1

x2
j

2p
(j)
0

)

δ

(
m∑

j=1

xj

)

, (6.4)

where δ is the Dirac delta; see, for example, Moore and Spruill (1975) or Chapter 25 and
Example 15.3 of Kendall et al. (2009). The generalized probability density (6.4) is a cen-
tered multivariate Gaussian concentrated on a hyperplane passing through the origin (the
hyperplane consists of the points such that

∑m
j=1 xj = 0); the restriction of the generalized

probability density (6.4) to the hyperplane through the origin is also a centered multivariate
Gaussian. Thus, the distribution of X defined in (6.2) converges as n → ∞ to the distri-
bution of the sum of the squares of m− 1 independent Gaussian random variables of mean
zero whose variances are the variances of the restricted multivariate Gaussian distribution
along its principal axes; see, for example, Moore and Spruill (1975) or Chapter 25 of Kendall
et al. (2009). Given these variances, the following section describes an efficient algorithm
for computing the probability that the associated sum of squares is greater than or equal to
any particular value; this probability is the desired P-value, in the limit of large numbers of
draws. See Sections 6.4 and 6.5 for further details.

To compute the variances of the restricted multivariate Gaussian distribution along its
principal axes, we multiply the diagonal matrix D whose diagonal entries are 1/p

(1)
0 , 1/p

(2)
0 ,

. . . , 1/p
(m)
0 from both the left and the right by the projection matrix P whose entries are

Pj,k =







1− 1
m
, j = k

− 1
m
, j 6= k

(6.5)
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for j, k = 1, 2, . . . , m (upon application to a vector, P projects onto the orthogonal comple-
ment of the subspace consisting of every vector whose entries are all the same). The entries
of this product B = PDP are

Bj,k =







1

p
(j)
0

− 1
m

(

1

p
(j)
0

+ 1

p
(k)
0

)

+ 1
m2

∑m
i=1

1

p
(i)
0

, j = k

− 1
m

(

1

p
(j)
0

+ 1

p
(k)
0

)

+ 1
m2

∑m
i=1

1

p
(i)
0

, j 6= k
(6.6)

for j, k = 1, 2, . . . , m. Clearly, B is self-adjoint. By construction, exactly one of the
eigenvalues of B is 0. The other eigenvalues of B are the reciprocals of the desired variances
of the restricted multivariate Gaussian distribution along its principal axes.

Remark 6.2.2. The m × m matrix B defined in (6.6) is the sum of a diagonal matrix
and a low-rank matrix. The methods of Gu and Eisenstat (1994, 1995) for computing the
eigenvalues of such a matrix B require only either O(m2) or O(m) floating-point operations.
The O(m2) methods of Gu and Eisenstat (1994, 1995) are usually more efficient than the
O(m) method of Gu and Eisenstat (1995), unless m is impractically large.

Remark 6.2.3. It is not hard to accommodate homogeneous linear constraints of the form
∑m

j=1 cj xj = 0 (where c1, c2, . . . , cm are real numbers) in addition to the requirement
that

∑m
j=1 xj = 0. Accounting for any additional constraints is entirely analogous to the

procedure detailed above for the particular constraint that
∑m

j=1 xj = 0. The estimation of
parameters from the data in order to specify the model can impose such extra homogeneous
linear constraints; see, for example, Chapter 25 of Kendall et al. (2009). A detailed treatment
is available in Chapter 7.

6.3 Linear combinations of independent χ2 variates

This section describes efficient algorithms for evaluating the cumulative distribution function
(cdf) of the sum of the squares of independent centered Gaussian random variables. The
principal tool is the following theorem, expressing the cdf as an integral suitable for evaluation
via quadratures (see, for example, Remark 6.3.4 below).

Theorem 6.3.1. Suppose that m is a positive integer, X1, X2, . . . , Xm are i.i.d. Gaussian
random variables of zero mean and unit variance, and σ1, σ2, . . . , σm are positive real
numbers. Suppose in addition that X is the random variable

X =

m∑

j=1

|σj Xj|2. (6.7)

Then, the cumulative distribution function (cdf) F of X is

F (x) =

∫ ∞

0

Im




e1−t eit

√
m

π
(
t− 1

1−i
√
m

)∏m
j=1

√

1− 2(t− 1)σ2
j /x+ 2itσ2

j

√
m/x



 dt (6.8)

for any positive real number x, and F (x) = 0 for any nonpositive real number x. The square
roots in (6.8) denote the principal branch, and Im takes the imaginary part.



6.3. LINEAR COMBINATIONS OF INDEPENDENT χ2 VARIATES 115

Proof. For any j = 1, 2, . . . , m, the characteristic function of |Xj|2 is

ϕ1(t) =
1√

1− 2it
, (6.9)

using the principal branch of the square root. By the independence of X1, X2, . . . , Xm, the
characteristic function of the random variable X defined in (6.7) is therefore

ϕ(t) =

m∏

j=1

ϕ1(tσ
2
j ) =

1
∏m

j=1

√

1− 2itσ2
j

. (6.10)

The probability density function of X is therefore

f(x) =
1

2π

∫ ∞

−∞
e−itx ϕ(t) dt =

1

2π

∫ ∞

−∞

e−itx

∏m
j=1

√

1− 2itσ2
j

dt (6.11)

for any real number x, and the cdf of X is

F (x) =

∫ x

−∞
f(y) dy =

1

2
+

i

2π
PV

∫ ∞

−∞

e−itx

t
∏m

j=1

√

1− 2itσ2
j

dt (6.12)

for any real number x, where PV denotes the principal value.
It follows from the fact that X is almost surely positive that the cdf F (x) is identically

zero for x ≤ 0; there is no need to calculate the cdf for x ≤ 0. Substituting t 7→ t/x in (6.12)
yields that the cdf is

F (x) =
1

2
+

i

2π
PV

∫ ∞

−∞

e−it

t
∏m

j=1

√

1− 2itσ2
j /x

dt (6.13)

for any positive real number x, where again PV denotes the principal value. The branch
cuts for the integrand in (6.13) are all on the lower half of the imaginary axis.

Though the integration in (6.13) is along (−∞,∞), we may shift contours and instead
integrate along the rays

{
(−

√
m− i)t + i : t ∈ (0,∞)

}
(6.14)

and
{
(
√
m− i)t+ i : t ∈ (0,∞)

}
, (6.15)

obtaining from (6.13) that

F (x) =
i

2π

∫ ∞

0




e1−t e−it

√
m

(
t− 1

1+i
√
m

)∏m
j=1

√

1− 2(t− 1)σ2
j/x− 2itσ2

j

√
m/x

− e1−t eit
√
m

(
t− 1

1−i
√
m

)∏m
j=1

√

1− 2(t− 1)σ2
j/x+ 2itσ2

j

√
m/x



 dt (6.16)

for any positive real number x. Combining (6.16) and the definition of “Im” yields (6.8).
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Remark 6.3.2. We chose the contours (6.14) and (6.15) so that the absolute value of the
expression under the square root in (6.8) is greater than

√

m/(m+ 1). Therefore,

∣
∣
∣
∣
∣

m∏

j=1

√

1− 2(t− 1)σ2
j/x+ 2itσ2

j

√
m/x

∣
∣
∣
∣
∣
>

(
m

m+ 1

)m/4

>
1

e1/4
(6.17)

for any t ∈ (0,∞) and any x ∈ (0,∞). Thus, the integrand in (6.8) is never large for
t ∈ (0,∞).

Remark 6.3.3. The integrand in (6.8) decays exponentially fast, at a rate independent of
the values of σ1, σ2, . . . , σm, and x (see the preceding remark).

Remark 6.3.4. An efficient means of evaluating (6.8) numerically is to employ adaptive
Gaussian quadratures; see, for example, Section 4.7 of Press et al. (2007). To attain double-
precision accuracy (roughly 15-digit precision), the domain of integration for t in (6.8) need
be only (0, 40) rather than the whole (0,∞). Good choices for the lowest orders of the
quadratures used in the adaptive Gaussian quadratures are 10 and 21, for double-precision
accuracy.

Remark 6.3.5. For a similar, more general approach, see Rice (1980). For alternative
approaches, see Duchesne and de Micheaux (2010). Unlike these alternatives, the approach
of the present section has an upper bound on its required number of floating-point operations
that depends only on the numberm of bins and on the precision ε of computations, not on the
values of σ1, σ2, . . . , σm, or x. Indeed, it is easy to see that the numerical evaluation of (6.8)
theoretically requires O(m ln2(

√
m/ε)) quadrature nodes: the denominator of the integrand

in (6.8) cannot oscillate more than m+ 1 times (once for each “pole”) as t ranges from 0 to
∞, while the numerator of the integrand cannot oscillate more than

√
m ln(2

√
m/ε) times

as t ranges from 0 to ln(2
√
m/ε); furthermore, the domain of integration for t in (6.8) need

be only (0, ln(2
√
m/ε)) rather than the whole (0,∞). In practice, using several hundred

quadrature nodes produces double-precision accuracy (roughly 15-digit precision); see, for
example, Section 6.5 below. Also, the observed performance is similar when subtracting the
imaginary unit i from the contours (6.14) and (6.15).

6.4 Numerical method

An efficient method for calculating the P-values in the limit of large numbers of draws
proceeds as follows. Given draws from any distribution — not necessarily from the specified
model — we can form the associated statistic X defined in (6.2) and (6.1); in the limit of
large numbers of draws, the P-value that the draws do not arise from the model is then
just one minus the cumulative distribution function F in (6.8) evaluated at x = X , with
σ2
j in (6.8) being the reciprocals of the positive eigenvalues of the matrix B defined in (6.6)

— after all, F (x) is then the probability that x is greater than the sum of the squares of
independent centered Gaussian random variables whose variances are the reciprocals of the
positive eigenvalues of B. Remark 6.3.4 above describes an efficient means of evaluating
F (x) numerically.
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6.5 Numerical examples

This section illustrates the performance of the method of Section 6.4, via numerical examples.
We plot the complementary cumulative distribution function of the square of the root-

mean-square statistic whose probability distribution is determined in Section 6.2, in the limit
of large numbers of draws. This is the distribution of the statistic X defined in (6.2) when

the observations used to form X arise as i.i.d. draws from the same distribution p
(1)
0 , p

(2)
0 , . . . ,

p
(m)
0 used in (6.1) for defining X . In order to evaluate the cumulative distribution function
(cdf) F , we apply adaptive Gaussian quadratures to the integral in (6.8) as described in
Section 6.3, obtaining σj in (6.8) via the algorithm described in Section 6.2.

In applications to goodness-of-fit testing, if the statistic X from (6.2) takes on a value x,
then the P-value for the draws to arise from the model distribution is one minus the cdf F
in (6.8) evaluated at x. Figures 6.1 and 6.2 plot the P-value (1−F (x)) versus x for six example
model distributions (examples a, b, c, d, e, f). Table 6.3 provides formulae for the model
distributions used in the six examples. Tables 6.1 and 6.2 summarize the computational
costs required to attain at least 9-digit absolute accuracy for the plots in Figures 6.1 and 6.2,
respectively. Each plot displays 1−F (x) at 100 values for x. Figure 6.2 focuses on the tails
of the distributions, corresponding to suitably low P-values.

The following list describes the headings of the tables:

• m is the number of bins in Section 2 (p
(1)
0 , p

(2)
0 , . . . , p

(m)
0 are the probabilities of drawing

the corresponding bins under the specified model distribution).

• q is the maximum number of quadrature nodes required in any of the 100 evaluations
of 1− F (x) displayed in each plot of Figures 6.1 and 6.2.

• t is the total number of seconds required to perform the quadratures for all 100 evalu-
ations of 1− F (x) displayed in each plot of Figures 6.1 and 6.2.

• p
(j)
0 is the probability associated with bin j (j = 1, 2, . . . , m) in Section 6.2. The
constants C(a), C(b), C(c), C(d), C(e), C(f) in Table 6.3 are the positive real numbers

chosen such that
∑m

j=1 p
(j)
0 = 1. For any real number x, the floor ⌊x⌋ is the greatest

integer less than or equal to x; the probability distributions for examples (c) and (d)
involve the floor.

We used Fortran 77 and ran all examples on one core of a 2.2 GHz Intel Core 2 Duo
microprocessor with 2 MB of L2 cache. Our code is compliant with the IEEE double-precision
standard (so that the mantissas of variables have approximately one bit of precision less
than 16 digits, yielding a relative precision of about 2E–16). We diagonalized the matrix
B defined in (6.6) using the Jacobi algorithm (see, for example, Chapter 8 of Golub and
Van Loan (1996)), not taking advantage of Remark 6.2.2; explicitly forming the entries of
the matrix B defined in (6.6) can incur a numerical error of at most the machine precision

(about 2E–16) times max1≤j≤m p
(j)
0 /min1≤j≤m p

(j)
0 , yielding 9-digit accuracy or better for

all our examples. Higher precision is possible via the interlacing properties of eigenvalues,
following Gu and Eisenstat (1994). Of course, even 5-digit precision would suffice for most
statistical applications; however, modern computers can produce high accuracy very fast, as
the examples in this section illustrate.
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Table 6.1: Values for Figure 6.1

m q t
(a) 500 310 5.0
(b) 250 270 2.4
(c) 100 250 0.9
(d) 50 250 0.5
(e) 25 330 0.3
(f) 10 270 0.1

Table 6.2: Values for Figure 6.2

m q t
(a) 500 310 5.7
(b) 250 330 3.0
(c) 100 270 1.0
(d) 50 290 0.6
(e) 25 350 0.4
(f) 10 270 0.2

Remark 6.5.1. It is easy to compute the P-values (in the limit of large numbers of draws) for
a distribution having infinitely many bins, but only to any arbitrary accuracy that is greater
than the machine precision. Specifically, given an extremely small positive real number ε, we
would retain the smallest possible number of bins whose associated probabilities p

(1)
0 , p

(2)
0 ,

. . . , p
(m)
0 satisfy p

(1)
0 + p

(2)
0 + · · ·+ p

(m)
0 ≥ 1− ε, and then proceed with the computation as if

these finitely many were the only bins. (Needless to say, if the fraction of the experimental
draws falling outside the finitely many retained bins is significantly greater than ε, then we
can be highly confident that the draws did not arise from the model.)

Table 6.3: Values for both Figure 6.1 and Figure 6.2

m p
(j)
0

(a) 500 C(a) · (300 + j)−2

(b) 250 C(b) · (260− j)3

(c) 100 C(c) · ⌊(40 + j)/40⌋−1/6

(d) 50 C(d) · (1/2 + ln⌊(61− j)/10⌋)
(e) 25 C(e) · exp(−5j/8)

(f) 10 C(f) · exp(−(j − 1)2/6)
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Figure 6.1: The vertical axis is 1− F (x) from (6.8); the horizontal axis is x.
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Figure 6.2: The vertical axis is 1− F (x) from (6.8); the horizontal axis is x.



Chapter 7

Asymptotic P-values with nuisance
parameters

This chapter is an extension of the previous; unlike in the previous chapter, the models in
the present chapter involve parameter estimation. Once again we provide efficient black-box
algorithms for calculating, in the limit of large numbers of draws, the asymptotic P-values for
the root-mean-square statistic discussed in the previous chapters. As observed in the previous
chapters, computing the exact P-values via Monte Carlo simulation is often feasible, too.

7.1 Recap

A basic task in statistics is to ascertain whether a given set of observations did not arise as
independent and identically distributed (i.i.d.) draws from a member of a specified family of
probability distributions (the specified family is known as the “model”). We consider the case
in which the draws are discrete random variables, taking values in a finite set. In accordance
with the standard terminology, we will refer to the possible values of the discrete random
variables as “bins” (“categories,” “cells,” and “classes” are common synonyms for “bins”).
Chapter 6 treats the special case in which the “family” of distributions constituting the
model in fact consists of a single, fully specified probability distribution. The present chapter
focuses on models parameterized with a single scalar; our techniques extend straightforwardly
to any parameterization with multiple scalars (or, equivalently, to any parameterization with
a vector).

A natural approach to ascertaining whether a given set of draws does not come from
the model uses a root-mean-square statistic. To construct this statistic, we estimate both
the parameter and the probability distribution over the bins using the given draws, and
then measure the root-mean-square difference between this empirical distribution and the
model distribution corresponding to the estimated parameter (for details, see, for example,
Rao, 2002; Varadhan et al., 1974, page 123; or Section 7.2 below). If the draws do in fact
arise from the specified model, then with high probability this root-mean-square is not large.
Thus, if the root-mean-square statistic is large, then we can be confident that the draws did
not arise from the model.

To quantify “large” and “confident,” let us denote by x the value of the root-mean-

121
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square for the given draws; let us denote by X the root-mean-square statistic constructed
for different draws that definitely were in fact taken i.i.d. from the model. The P-value is
then defined to be the probability that X ≥ x (viewing X — but not x — as a random
variable).

Unfortunately, the P-values for the simple root-mean-square are different for different
models. In order to avoid this seeming inconvenience (at least asymptotically), one may
weight the average in the root-mean-square by the reciprocals of the model probabilities
associated with the various bins, obtaining the classic χ2 statistic of Pearson (1900); see
Remark 7.2.1 below. However, with the now widespread availability of computers, direct use
of the simple root-mean-square statistic has become feasible (and actually turns out to be
very convenient). The present chapter provides efficient black-box algorithms for computing
the P-values for any model with a smooth parameterization, in the limit of large numbers
of draws. Calculating P-values for small numbers of draws via Monte-Carlo simulations can
also be practical, as illustrated in previous chapters.

The remainder of the present chapter has the following structure: Section 7.2 details
the simple statistic discussed above, expressing the asymptotic P-values for the associated
goodness-of-fit test in a form suitable for rapid computation. Section 7.3 summarizes the
method for computing the P-values of the root-mean-square statistic. Section 7.4 applies
the method to several examples.

7.2 The sum-of-squares statistic

This section details the simple root-mean-square statistic discussed briefly in Section 7.1,
determining its probability distribution in the limit of large numbers of draws, assuming
that the draws do in fact come from the specified model. The distribution determined in
this section yields the P-values (in the limit of large numbers of draws): given a value x
for the root-mean-square statistic constructed from observations coming from an unknown
distribution, and given the value of the maximum-likelihood estimate θ̂ for the parameter
of the distribution, the P-value that the observations did not arise as i.i.d. draws from the
specified model is the probability that the root-mean-square statistic is greater than or equal
to x when constructed from i.i.d. draws that do come from the model distribution associated
with the parameter θ̂. (Please note that the definition in (7.2) and (7.3) below of the simple
statistic involves the maximum-likelihood estimate θ̂. Maximum likelihood is the canonical
method for parameter estimation, and is the focus of the present chapter. See formulae (7.13)
and (7.14) below regarding likelihood and maximum-likelihood estimation.)

To begin, we set notation and form the goodness-of-fit statistic X to be analyzed. Given
m bins, numbered 1, 2, . . . , m, we denote by p

(1)
0 (θ), p

(2)
0 (θ), . . . , p

(m)
0 (θ) the probabilities

associated with the respective bins under the specified model, where θ is a real number
parameterizing the model; of course,

m∑

j=1

p
(j)
0 (θ) = 1 (7.1)

for any parameter θ. In order to obtain a draw conforming to the model for a particular
value of θ, we select at random one of the m bins, with probabilities p

(1)
0 (θ), p

(2)
0 (θ), . . . ,
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p
(m)
0 (θ). We perform this selection independently n times. For j = 1, 2, . . . , m, we denote
by Y (j) the fraction of times that we choose bin j (that is, Y (j) is the number of times that
we choose bin j, divided by n); obviously,

∑m
j=1 Y

(j) = 1. We define Xj to be
√
n times the

difference of Y (j) from its expected value using the maximum-likelihood estimate θ̂ of the
actual parameter θ, that is,

Xj =
√
n (Y (j) − p

(j)
0 (θ̂)) (7.2)

for j = 1, 2, . . . , m. Finally, we form the statistic

X =
m∑

j=1

X2
j , (7.3)

and now determine its distribution in the limit that the number n of draws is large. The root-

mean-square statistic
√
∑m

j=1(nY
(j) − np

(j)
0 (θ̂))2/n is the square root of X . As the square

root is a monotonically increasing function, the P-values are the same whether determined
via X or via

√
X ; for convenience, we focus on X below.

Remark 7.2.1. The classic χ2 test for goodness-of-fit of Pearson (1900) replaces (7.3) with
the statistic

χ2 =
m∑

j=1

X2
j

p
(j)
0 (θ̂)

, (7.4)

where X1, X2, . . . , Xm are the same as in (7.2) and (7.3), and θ̂ is the maximum-likelihood
estimate of the parameter.

For definiteness, we will be assuming that p
(1)
0 , p

(2)
0 , . . . , p

(m)
0 are differentiable as func-

tions of the parameter θ, that the maximum of the likelihood occurs in the interior of the
domain for θ, that the maximum-likelihood estimate θ̂ is almost surely the correct value
for the actual parameter θ as n → ∞, and that the variance of θ̂ tends to zero as n → ∞
(thus θ̂ is not “random” in the limit of large numbers of draws). As detailed, for example,
by Moore and Spruill (1975) and by Kendall et al. (2009) in a chapter on goodness-of-fit
(see also Remark 7.2.3 below), the multivariate central limit theorem then shows that the
joint distribution of X1, X2, . . . , Xm converges in distribution as n → ∞, with the limiting
generalized probability density proportional to

exp

(

−
m∑

j=1

x2
j

2p
(j)
0 (θ̂)

)

· δ

(
m∑

j=1

xj

)

· δ

(
m∑

j=1

xj
d

dθ
ln(p

(j)
0 (θ))

∣
∣
∣
∣
θ=θ̂

)

, (7.5)

where δ is the Dirac delta, and θ̂ is the maximum-likelihood estimate of the parameter.
The generalized probability density in (7.5) is a centered multivariate Gaussian distribu-

tion concentrated on the intersection of two hyperplanes that both pass through the origin
(the intersection of the hyperplanes consists of all the points such that

∑m
j=1 xj = 0 and

∑m
j=1 xj

d
dθ
ln(p

(j)
0 (θ))

∣
∣
θ=θ̂

= 0); the restriction of the generalized probability density (7.5) to
the intersection of the hyperplanes is also a centered multivariate Gaussian. Thus, the distri-
bution of X defined in (7.3) converges as n → ∞ to the distribution of the sum of the squares
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of m− 2 independent Gaussian random variables of mean zero whose variances are the vari-
ances of the restricted multivariate Gaussian distribution along its principal axes (see, for
example, Chapter 25 of Kendall et al., 2009). Given these variances, Remark 6.3.4 describes
an efficient algorithm for computing the probability that the associated sum of squares is
greater than or equal to any particular value; this probability is the desired P-value, in the
limit of large numbers of draws. For a detailed discussion, see Section 7.3 below.

To compute the variances of the restricted multivariate Gaussian distribution along its
principal axes, we perform the following four steps:

1. Form an m × 2 matrix H whose columns both include a vector that is normal to the
hyperplane consisting of the points (x1, x2, . . . , xm) such that

m∑

j=1

xj = 0, (7.6)

and also include a vector that is normal to the hyperplane consisting of the points
(x1, x2, . . . , xm) such that

m∑

j=1

xj
d

dθ
ln(p

(j)
0 (θ))

∣
∣
∣
∣
θ=θ̂

= 0, (7.7)

where θ̂ is the maximum-likelihood estimate of the parameter. For example, we can
take the entries of H to be

Hj,k =

{
1, k = 1
d
dθ
ln(p

(j)
0 (θ))

∣
∣
θ=θ̂

, k = 2
(7.8)

for j = 1, 2, . . . , m and k = 1, 2, where again θ̂ is the maximum-likelihood estimate
of the parameter.

2. Form an orthonormal basis for the column space of H , by constructing a pivoted QR
decomposition

Hm×2 = Qm×2 ·R2×2 · Π2×2, (7.9)

where the columns of Q are orthonormal, R is upper-triangular, and Π is a permutation
matrix. (See, for example, Chapter 5 of Golub and Van Loan, 1996, for details on the
construction of such a pivoted QR decomposition.)

3. Form the m×m diagonal matrix D with the entries

Dj,k =

{

1/p
(j)
0 (θ̂), j = k

0, j 6= k
(7.10)

for j, k = 1, 2, . . . , m, where θ̂ is the maximum-likelihood estimate of the parame-
ter. Then, multiply D from both the left and the right by the orthogonal projection
(namely, I − QQ⊤) onto the intersection of the hyperplanes consisting of the points
satisfying (7.6) and (7.7), obtaining the m×m matrix

B = (I −QQ⊤)D (I −QQ⊤), (7.11)

where I is the m×m identity matrix.
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4. Find the eigenvalues of the self-adjoint matrix B defined in (7.11). By construction,
exactly two of the eigenvalues of B are zeros. The other eigenvalues of B are the
reciprocals of the desired variances of the restricted multivariate Gaussian distribution
along its principal axes.

Remark 7.2.2. The m × m matrix B defined in (7.11) is the sum of a diagonal matrix
and a low-rank matrix. The methods of Gu and Eisenstat (1994, 1995) for computing the
eigenvalues of such a matrix B require only either O(m2) or O(m) floating-point operations.
Note that the O(m2) methods of Gu and Eisenstat (1994, 1995) are more efficient than the
O(m) procedure of Gu and Eisenstat (1995), unless m is impractically large.

Remark 7.2.3. Under appropriate regularity conditions, it is straightforward to derive the
homogeneous linear constraint — analogous to (7.7) — that

m∑

j=1

Xj
d

dθ
ln(p

(j)
0 (θ))

∣
∣
∣
∣
θ=θ̂

= 0, (7.12)

where θ̂ is the maximum-likelihood estimator. The following is a sketch of the proof of (7.12).
To determine the maximum-likelihood estimate θ̂, we consider the likelihood, namely the

multinomial distribution

L(y(1), y(2), . . . , y(m), θ) = n!
m∏

j=1

(p
(j)
0 (θ))ny

(j)

(ny(j))!
. (7.13)

Maximizing (7.13) defines θ̂ via the formula

0 =
∂

∂θ
ln(L(Y (1), Y (2), . . . , Y (m), θ))

∣
∣
∣
∣
θ=θ̂

=

m∑

j=1

nY (j) d

dθ
ln(p

(j)
0 (θ))

∣
∣
∣
∣
θ=θ̂

. (7.14)

It follows from (7.1) that
m∑

j=1

d

dθ
p
(j)
0 (θ) = 0 (7.15)

for any parameter θ, in particular for θ = θ̂. Combining (7.14) and (7.15) yields that

m∑

j=1

(Y (j) − p
(j)
0 (θ̂))

d

dθ
ln(p

(j)
0 (θ))

∣
∣
∣
∣
θ=θ̂

= 0. (7.16)

Combining (7.16) and (7.2) yields (7.12), as desired.

7.3 Numerical method

An efficient method for calculating the P-values in the limit of large numbers of draws
proceeds as follows. Given draws from any distribution — not necessarily from the model
— we can form the associated statistic X defined in (7.3) and (7.2); in the limit of large
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numbers of draws, the P-value that the draws do not arise from the model is then just one
minus the cumulative distribution function F (x) in (6.8) evaluated at x = X , with σ2

j in (6.8)
obtained via Step 4 of the algorithm of Section 7.2 (after all, F (x) is the probability that x
is greater than the sum of the squares of independent centered Gaussian random variables
whose variances are given by Step 4 above). Remark 6.3.4 describes an efficient means of
evaluating F (x) numerically.

7.4 Numerical examples

This section illustrates the performance of the algorithm of Section 7.3 via several numerical
examples.

Figure 7.1 and Table 7.1 correspond to the first example. The model distribution for the
first example has 4 bins, with the probabilities indicated in Table 7.4. We will detail the
interpretation of the figures and tables shortly.

Figure 7.2 and Table 7.2 correspond to the second example. The model for the second
example is the Zipf distribution on 100 bins. The row for Figure/Table 7.2 in Table 7.4
provides a definition of the Zipf distribution.

Figure 7.3 and Table 7.3 correspond to the third example. The model for the third
example is the standard Poisson distribution. The row for Figure/Table 7.3 in Table 7.4
provides a definition of the Poisson distribution.

To validate our algorithms, we conduct computational simulations (see Section 6.5 for
a complementary approach). In every simulation, we choose the number n of draws to be
a very large number, namely n = 100,000. (The algorithms of the present chapter concern
the limit as n → ∞.) Part (a) of the examples uses ℓ = 1,000 simulations; part (b) of
the examples uses ℓ = 10,000 simulations. The convergence (as ℓ increases) of the plotted
points to the straight line of unit slope through the origin provides numerical validation of
our algorithms, for the following reasons.

To create the plots, we run ℓ simulations, each taking n = 100,000 i.i.d. draws from the
model distribution with the specified parameter θ. For each simulation, we compute the
statistic X defined in (7.3), forming Y (1), Y (2), . . . , Y (m) and θ̂ needed in (7.2) and (7.3)
using the generated draws. We then compute the asymptotic P-value associated with each of
these values for X , as described in Section 7.3, and sort the resulting P-values. These sorted
results are the vertical coordinates of the points in the plots; the horizontal coordinates are
the equispaced numbers 1/(2ℓ), 3/(2ℓ), 5/(2ℓ), . . . , (2ℓ− 1)/(2ℓ).

As the number ℓ of simulations increases, and insofar as the number n of draws is very
large, the plotted points should converge to the straight line through the origin of slope 1
(and, indeed, our experiments demonstrate this). The dotted line in each plot is the straight
line through the origin of slope 1. The trials converge correctly: the root-mean-square
statistics for about α% of the simulations should have P-values of α% or less, for every
α ∈ (0, 100); in the limit that both the number n of draws and the number ℓ of simulations
are large, the computed P-values for exactly α% of the simulations should be less than or
equal to α% (this follows from the definition of P-values; it also follows from the fact that
the P-values for the statistic X are given by its cumulative distribution function F , and from
the fact that F (X) is uniformly distributed over [0, 1] for any random variable X distributed
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according to a continuous cumulative distribution function F ).
The following list describes the headings of the tables:

• ℓ is the number of simulations conducted in generating the associated plot.

• θ is the parameter for the model distribution used in generating the i.i.d. draws.

• m is the number of bins in the model (see Remark 7.4.3 with regard to the Poisson
distribution of the third example).

• q is the maximum number of quadrature nodes required to evaluate the P-value for
any of the ℓ root-mean-square statistics produced by the simulations.

• t is the total number of seconds required to perform the quadratures for evaluating the
P-values for all ℓ of the root-mean-square statistics produced by the simulations.

• s is the total number of seconds required to perform all ℓ simulations.

• p
(j)
0 (θ) is the probability associated with bin j (j = 1, 2, . . . , m), as a function of the
parameter θ.

• θ̂(Y (1), Y (2), . . . , Y (m)) is the maximum-likelihood estimate of the parameter θ, as a
function of the fractions Y (1), Y (2), . . . , Y (m) of the draws in the respective bins (a
detailed definition of Y (1), Y (2), . . . , Y (m) is available in Section 7.2).

We used Fortran 77 and ran all examples on one core of a 2.2 GHz Intel Core 2 Duo
microprocessor with 2 MB of L2 cache. Our code is compliant with the IEEE double-precision
standard (so that the mantissas of variables have approximately one bit of precision less than
16 digits, yielding a relative precision of about 2E–16). We diagonalized the matrix B defined
in (7.11) using the Jacobi algorithm (see, for example, Chapter 8 of Golub and Van Loan,
1996), not taking advantage of Remark 7.2.2. We generated the pseudorandom numbers
used in the simulations via (Mitchell-Moore-Brent-Knuth) lagged Fibonacci sequences (see,
for example, Section 7.1.5 of Press et al., 2007).

Remark 7.4.1. It is easy to compute the P-values (in the limit of large numbers of draws)
for a distribution having infinitely many bins, but only to any arbitrary accuracy that is
greater than the machine precision. Specifically, given a fully specified model distribution
and an extremely small positive real number ε, we would retain the smallest possible number
of bins whose associated probabilities p

(1)
0 , p

(2)
0 , . . . , p

(m)
0 satisfy p

(1)
0 +p

(2)
0 + · · ·+p

(m)
0 ≥ 1−ε,

and then proceed with the computation as if these finitely many were the only bins. When
there is a parameter θ being estimated, we observe that the maximum-likelihood estimate
θ̂ typically has variance zero and is almost surely correct in the limit of large numbers of
draws; thus, as before, we may retain the smallest possible number of bins whose associated
probabilities p

(1)
0 (θ̂), p

(2)
0 (θ̂), . . . , p

(m)
0 (θ̂) satisfy p

(1)
0 (θ̂) + p

(2)
0 (θ̂) + · · ·+ p

(m)
0 (θ̂) ≥ 1− ε, and

then proceed with the computation as if these finitely many were the only bins. (Needless to
say, if the fraction of the experimental draws falling outside the finitely many retained bins
is significantly greater than ε, then we can be highly confident that the draws did not arise
from the model.)
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Figure 7.1: 2× 2 contingency-table/cross-tabulation of Table 7.4

Table 7.1: Values for Figure 7.1

ℓ θ m q t s
(a) 103 .03 4 190 .43E0 .44E1
(b) 104 .03 4 190 .43E1 .45E2

Remark 7.4.2. For the second example (the Zipf distribution), we computed the maximum-

likelihood estimate θ̂ from the data Y (1), Y (2), . . . , Y
(m)
0 by finding the zero of the function

g(θ̂) = f(θ̂) −∑m
j=1 Y

(j) ln(j) = 0, where f is the same as in Table 7.4, namely f(θ̂) =
(
∑m

j=1 j
−θ̂ ln(j)

)/(
∑m

j=1 j
−θ̂
)

. We evaluated the zero θ̂ numerically, via bisection (see, for

example, Chapter 9 of Press et al., 2007).

Remark 7.4.3. For the third example (the Poisson distribution), we employed Remark 7.4.1,
with ε = 10−8.
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Figure 7.2: Zipf distribution of Table 7.4

Table 7.2: Values for Figure 7.2

ℓ θ m q t s
(a) 103 1 100 350 .92E1 .13E2
(b) 104 1 100 390 .11E3 .13E3
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Figure 7.3: Poisson distribution of Table 7.4

Table 7.3: Values for Figure 7.3

ℓ θ m q t s
(a) 103 10.3 36 290 .37E1 .86E1
(b) 104 10.3 36 330 .37E2 .86E2
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Table 7.4: Values for Figures 7.1–7.3 and Tables 7.1–7.3

Fig./Table# p
(j)
0 (θ) θ̂(Y (1), Y (2), . . . , Y (m))

Fig./Table 7.1
p
(1)
0 = .04·θ, p(2)0 = .04(1−θ)

p
(3)
0 = .96·θ, p(4)0 = .96(1−θ)

θ̂ = Y (1) + Y (3)

Fig./Table 7.2 p
(j)
0 = j−θ

/∑m
i=1 i

−θ
θ̂ = f−1

(∑m
j=1 Y

(j) ln(j)
)
,

f(θ̂) =
(
∑m

j=1 j
−θ̂ ln(j)

)/(
∑m

j=1 j
−θ̂
)

Fig./Table 7.3 p
(j)
0 = e−θθj−1/(j − 1)! θ̂ =

∑∞
j=1(j − 1) Y (j)



Chapter 8

Asymptotic power

A natural yet unconventional test for goodness-of-fit measures the discrepancy between the
model and empirical distributions via their root-mean-square distance (or, equivalently, via
its square). The present chapter characterizes the statistical power of such a test against
a family of alternative distributions, in the limit that the number of observations is large,
with every alternative departing from the model in the same direction. Specifically, the
chapter provides an efficient numerical method for evaluating the cumulative distribution
function (cdf) of the square of the root-mean-square distance between the model and em-
pirical distributions under the alternatives, in the limit that the number of observations is
large. The chapter illustrates the scheme by plotting the asymptotic power (as a function of
the significance level) for several examples.

8.1 Recap

Given n observations, each falling in one of m bins, we would like to test if these observations
are consistent with having arisen as independent and identically distributed (i.i.d.) draws
from a specified probability distribution p0 over the m bins (p0 is known as the “model”).
A simple statistic measuring the deviation between p0 and the observations is the square xa

of the root-sum-square distance between the actually observed distribution of the draws and
the expected distribution p0, that is,

xa =
m∑

j=1

(y(j)a − p
(j)
0 )2, (8.1)

where y
(1)
a , y

(2)
a , . . . , y

(m)
a are the proportions of the n observations falling in bins 1, 2, . . . ,

m, respectively.

The “P-value” is then defined to be the probability that X0 ≥ xa, where X0 would be
the same as xa, but constructed from n draws that definitely are taken i.i.d. from p0, that is,

X0 =

m∑

j=1

(Y
(j)
0 − p

(j)
0 )2, (8.2)

131
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where Y
(1)
0 , Y

(2)
0 , . . . , Y

(m)
0 are the proportions of n i.i.d. draws from p0 falling in bins 1, 2,

. . . , m, respectively. When calculating the P-value — the probability that X0 ≥ xa — we
view X0 as a random variable while viewing xa as a fixed number. If the P-value is small,
then we can be confident that the observed draws were not taken i.i.d. from the model p0.

To characterize the statistical power of the P-value based on the root-mean-square, we
consider n i.i.d. draws from the alternative distribution

pa = p0 + a/
√
n, (8.3)

where a is a vector whose m entries satisfy
∑m

j=1 a
(j) = 0. We thus need to calculate the

distribution of the square Xa of the root-sum-square distance,

Xa =

m∑

j=1

(Y (j)
a − p

(j)
0 )2, (8.4)

where Y
(1)
a , Y

(2)
a , . . . , Y

(m)
a are the proportions of n i.i.d. draws from pa falling in bins

1, 2, . . . , m, respectively. Section 8.4 below provides an efficient method for calculating the
cumulative distribution function (cdf) of n · Xa in the limit that the number n of draws
is large. Section 8.5 below then describes how to use such a method to plot the cdf of
the P-values; this cdf is the same as the statistical power function of the hypothesis test
based on the root-mean-square distance (as a function of the significance level). Presenting
this method is the principal purpose of the present chapter, complementing the previous
chapters, which compare the root-mean-square distance with classical statistics such as χ2,
the log–likelihood-ratio G2, and other members of the Cressie-Read power-divergence family.

As reviewed, for example, by Kendall et al. (2009) and Rao (2002),m·n·Xa defined in (8.4)
converges in distribution to a noncentral χ2 in the limit that the number n of draws is large,
when the model p0 is a uniform distribution. When p0 is nonuniform, m ·n ·Xa converges in
distribution to the sum of the squares of independent Gaussian random variables in the limit
that the number n of draws is large, as shown by Moore and Spruill (1975) and reviewed in
Section 8.2 below. Section 8.3 provides integral representations for the cdf of the sum of the
squares of independent Gaussian random variables and applies suitable quadratures for their
numerical evaluation. Section 8.4 summarizes the numerical method obtained by combining
Sections 8.2 and 8.3. Section 8.5 summarizes a scheme for plotting the asymptotic power (as
a function of the significance level) using the method of Section 8.4. Section 8.6 illustrates
the methods via several numerical examples.

The extension to models with nuisance parameters is straightforward, via the techniques
of Chapter 7; the present chapter focuses on the simpler case in which the model p0 is a
single, fully specified probability distribution.

8.2 The sum-of-squares statistic

This section states Theorem 8.2.1, which is a special case of Theorem 4.2 of Moore and
Spruill (1975). Before stating the theorem, we need to set up some notation. The set-up
amounts to an algorithm for computing the real numbers σ(1), σ(2), . . . , σ(m−1) and ζ (1), ζ (2),
. . . , ζ (m−1) used in Theorem 8.2.1, where m is an integer greater than 1.
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First, we aim to define the positive real numbers σ(1), σ(2), . . . , σ(m−1), given any m× 1
vector p0 whose entries are all positive. We define D to be the diagonal m×m matrix

Dj,k =

{
1

p
(j)
0

, j = k

0, j 6= k
(8.5)

for j, k = 1, 2, . . . , m. We define H to be the m×m matrix

Hj,k =

{

1− 1
m
, j = k

− 1
m
, j 6= k

(8.6)

for j, k = 1, 2, . . . , m. Note that H is an orthogonal projector. We define B = HDH , so
that B is the self-adjoint m×m matrix

Bj,k =







1

p
(j)
0

− 1
m

(
1

p
(j)
0

+ 1

p
(k)
0

)

+ 1
m2

∑m
i=1

1

p
(i)
0

, j = k

− 1
m

(
1

p
(j)
0

+ 1

p
(k)
0

)

+ 1
m2

∑m
i=1

1

p
(i)
0

, j 6= k
(8.7)

for j, k = 1, 2, . . . , m. As a self-adjoint matrix whose rank is m − 1 (after all, B = HDH ,
H is an orthogonal projector whose rank is m− 1, and D is a full-rank diagonal matrix), B
given in (8.7) has an eigendecomposition

B = QΛQ⊤, (8.8)

where Q is a real unitarym×m matrix and Λ is a diagonalm×m matrix such that Λm,m = 0.
Finally, we define the positive real numbers σ(1), σ(2), . . . , σ(m−1) via the formula

(σ(j))2 = 1/Λj,j (8.9)

for j = 1, 2, . . . , m − 1, where Λ1,1, Λ2,2, . . . , Λm,m are the diagonal entries of Λ from the
eigendecomposition (8.8).

Next, we define the real numbers ζ (1), ζ (2), . . . , ζ (m−1), given both p0 and an m×1 vector
a such that

∑m
j=1 a

(j) = 0. We define the (m− 1)× 1 vector

η = Q̃⊤a, (8.10)

where Q̃ is the leftmost m× (m− 1) block of Q from the eigendecomposition (8.8), that is,
Q̃ is the same as Q after deleting the last column of Q. We can then define the real numbers
ζ (1), ζ (2), . . . , ζ (m−1) via the formula

ζ (j) = η(j)/σ(j) (8.11)

for j = 1, 2, . . . , m− 1, where η is defined in (8.10) and σ is defined in (8.9).
With this notation, we can state the following special case of Theorem 4.2 of Moore and

Spruill (1975).
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Theorem 8.2.1. Suppose that m is an integer greater than one, p0 is a probability dis-
tribution over m bins (that is, p0 is an m × 1 vector whose entries are all positive and
∑m

j=1 p
(j)
0 = 1), a is an m × 1 vector such that

∑m
j=1 a

(j) = 0, and Y
(1)
n , Y

(2)
n , . . . , Y

(m)
n are

the proportions of draws falling in bins 1, 2, . . . , m, respectively, out of a total of n i.i.d.
draws from the probability distribution

pa = p0 + a/
√
n. (8.12)

Suppose further that Xn is the random variable

Xn = n
m∑

j=1

(Y (j)
n − p

(j)
0 )2. (8.13)

Then, Xn converges in distribution to the random variable

X∞ =

m−1∑

j=1

(σ(j))2 (Z(j) + ζ (j))2 (8.14)

as n becomes large, where Z(1), Z(2), . . . , Z(m−1) are i.i.d. Gaussian random variables of zero
mean and unit variance, σ(1), σ(2), . . . , σ(m−1) are the positive real numbers defined in (8.9),
and ζ (1), ζ (2), . . . , ζ (m−1) are the real numbers defined in (8.11). The values of σ(1), σ(2),
. . . , σ(m−1) do not depend on the vector a; the values of ζ (1), ζ (2), . . . , ζ (m−1) do depend on
a.

Remark 8.2.2. The m × m matrix B defined in (8.7) is the sum of a diagonal matrix
and a low-rank matrix. The methods of Gu and Eisenstat (1994, 1995) for computing
the eigenvalues of such a matrix B and computing the result of applying Q⊤ from (8.8)
to an arbitrary vector require only either O(m2) or O(m log(m)) floating-point operations.
The O(m2) methods of Gu and Eisenstat (1994, 1995) are usually more efficient than the
O(m log(m)) method of Gu and Eisenstat (1995), unless m is impractically large.

Remark 8.2.3. In (8.14), X∞ when the entries of a are all zeros is stochastically strictly
less than X∞ for any nonzero a. Indeed, for any j = 1, 2, . . . , m−1, (Z(j))2 is stochastically
strictly less than (Z(j) + ζ (j))2 if ζ (j) 6= 0, while ζ (1) = ζ (2) = · · · = ζ (m−1) = 0 if and
only if the entries of a are all zeros; the fact that (Z(j))2 is stochastically strictly less than
(Z(j) + ζ (j))2 if ζ (j) 6= 0 follows from an easy calculation, as given, for example, in item x on
page 615 of Ruben (1974).

8.3 Linear combinations of independent noncentral χ2

variates

This section describes efficient algorithms for evaluating the cdf of the sum (8.14) of the
squares of independent Gaussian random variables. The bibliography of Duchesne and de
Micheaux (2010) gives references to possible alternatives to the methods of the present
section. Our principal tool is the following theorem, representing the cdf as an integral
suitable for evaluation via quadratures (see, for example, Remark 8.3.2 below); the theorem
expresses formula 7 of Rice (1980) in the same form as (6.8).
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Theorem 8.3.1. Suppose that ℓ is a positive integer, Z(1), Z(2), . . . , Z(ℓ) are i.i.d. Gaussian
random variables of zero mean and unit variance, and σ(1), σ(2), . . . , σ(ℓ) and ζ (1), ζ (2), . . . ,
ζ (ℓ) are real numbers. Suppose in addition that X is the random variable

X =

ℓ∑

j=1

(σ(j))2 (Z(j) + ζ (j))2. (8.15)

Then, the cdf F of X is

F (x) =

∫ ∞

0

Im

(

e1−y eiy
√
ℓ
∏ℓ

j=1 e
(ζ(j))2(1−wj(y))/(2wj (y))

π
(
y − 1

1−i
√
ℓ

)∏ℓ
j=1

√

wj(y)

)

dy (8.16)

for any positive real number x, where

wj(y) = 1− 2(y − 1)(σ(j))2/x+ 2iy(σ(j))2
√
ℓ/x, (8.17)

and F (x) = 0 for any nonpositive real number x. The square roots in (8.16) denote the
principal branch, and Im takes the imaginary part.

Remark 8.3.2. An efficient means of evaluating (8.16) numerically is to employ adaptive
Gaussian quadratures; see, for example, Section 4.7 of Press et al. (2007). Good choices for
the lowest orders of the quadratures used in the adaptive Gaussian quadratures are 10 and
21, for double-precision accuracy.

The remainder of the present section (particularly Remark 8.3.5) discusses the numerical
stability of the method of Remark 8.3.2 and recalls an alternative integral representation
suitable for use when the method of Remark 8.3.2 is not guaranteed to be numerically stable.
The following lemma, proven in Remark 6.3.2, ensures that the denominator in (8.16) is not
too small.

Lemma 8.3.3. Suppose that ℓ is a positive integer, and r1, r2, . . . , rℓ and y are positive
real numbers. Suppose further that (in parallel with formula (8.17) above)

wj = 1− rj(y − 1) + rjiy
√
ℓ (8.18)

for j = 1, 2, . . . , ℓ.
Then,

∣
∣
∣
∣
∣

ℓ∏

j=1

√
wj

∣
∣
∣
∣
∣
> e−1/4. (8.19)

The following lemma ensures that the numerator in (8.16) is not too large, provided that

e(ζ
(j))2/2 is not large.

Lemma 8.3.4. Suppose that r, y, and ℓ are positive real numbers and (in parallel with
formulae (8.17) and (8.18) above)

w = 1− r(y − 1) + riy
√
ℓ. (8.20)

Then,
∣
∣
∣
∣

1− w

w

∣
∣
∣
∣
≤
√

1 +
1

ℓ
. (8.21)



136 CHAPTER 8. ASYMPTOTIC POWER

Proof. Defining

z =
1

y
(8.22)

and

c = 1 +
1

r
, (8.23)

we obtain that
1− w

w
= − 1− z − i

√
ℓ

1 − cz − i
√
ℓ
. (8.24)

It follows from (8.24) that
∣
∣
∣
∣

1− w

w

∣
∣
∣
∣

2

=
(1− z)2 + ℓ

(1− cz)2 + ℓ
. (8.25)

It follows from (8.22) that z ≥ 0 and from (8.23) that c ≥ 1, and hence

cz − 1 ≥ z − 1. (8.26)

If z ≥ 1, then (8.26) yields that

(cz − 1)2 ≥ (z − 1)2, (8.27)

which in turn yields that

(1− z)2 + ℓ

(1− cz)2 + ℓ
≤ (1− z)2 + ℓ

(1− z)2 + ℓ
= 1. (8.28)

If z ≤ 1, then (recalling that z ≥ 0, too)

(1− z)2 + ℓ

(1− cz)2 + ℓ
≤ (1− z)2 + ℓ

ℓ
≤ 1 + ℓ

ℓ
. (8.29)

We see from (8.28) and (8.29) that, in all cases,

(1− z)2 + ℓ

(1− cz)2 + ℓ
≤ 1 +

1

ℓ
. (8.30)

Combining (8.25) and (8.30) yields (8.21).

Remark 8.3.5. The bound (8.19) shows that the integrand in (8.16) is not too large for
any nonnegative y, provided that the numerator of (8.16) is not too large. An upper bound
on the numerator follows immediately from (8.21):

∣
∣
∣
∣
∣

ℓ∏

j=1

e(ζ
(j))2(1−wj(y))/(2wj (y))

∣
∣
∣
∣
∣
≤

ℓ∏

j=1

e(ζ
(j))2

√
1+1/ℓ/2. (8.31)

For any particular application, we can check that the right-hand side of (8.31) is not too many
orders of magnitude in size, guaranteeing that applying quadratures to the integral in (8.16)
cannot lead to catastrophic cancellation in floating-point arithmetic. Naturally, it is also
possible to check on the magnitude of the integrand in (8.16) during its numerical evaluation,
indicating even better numerical stability than guaranteed by our a priori estimates. See
Theorem 8.3.7 and Remark 8.3.8 below for an alternative integral representation suitable for
use when the right-hand side of (8.31) is large.
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Remark 8.3.6. The bound in (8.31) is quite pessimistic. Often, in fact, the real part of
(1− wj(y))/(2wj(y)) is nonpositive, so that

∣
∣
∣e(ζ

(j))2(1−wj(y))/(2wj (y))
∣
∣
∣ ≤ 1. (8.32)

If the right-hand side of (8.31) is large, then we can use the method of Imhof (1961),
Davies (1980), and others, applying numerical quadratures to the integral in the following
theorem. Please note that the integrand in the following theorem decays reasonably fast
when the right-hand side of (8.31) is large.

Theorem 8.3.7. Suppose that ℓ is a positive integer, Z(1), Z(2), . . . , Z(ℓ) are i.i.d. Gaussian
random variables of zero mean and unit variance, and σ(1), σ(2), . . . , σ(ℓ) and ζ (1), ζ (2), . . . ,
ζ (ℓ) are real numbers. Suppose in addition that X is the random variable

X =
ℓ∑

j=1

(σ(j))2 (Z(j) + ζ (j))2. (8.33)

Then, the cdf F of X is

F (x) =
1

2
−
∫ ∞

0

Im

(

e−iy
∏ℓ

j=1 e
(ζ(j))2(1−vj (y))/(2vj (y))

πy
∏ℓ

j=1

√

vj(y)

)

dy (8.34)

for any positive real number x, where

vj(y) = 1− 2iy(σ(j))2/x, (8.35)

and F (x) = 0 for any nonpositive real number x. The square roots in (8.34) denote the
principal branch, and Im takes the imaginary part.

Remark 8.3.8. The integrand in (8.34) is not too large (except for values of y that are
closer to 0 than are typical quadrature nodes), since the real part of (1− vj(y))/(2vj(y)) is
always nonpositive, so that ∣

∣
∣e(ζ

(j))2(1−vj(y))/(2vj (y))
∣
∣
∣ ≤ 1. (8.36)

Moreover, the numerator in (8.34) decays reasonably fast (it is sub-Gaussian) when the
right-hand side of (8.31) is large.

8.4 Numerical method

Combining Sections 8.2 and 8.3 yields an efficient method for calculating the cdf F of n times
the square of the root-sum-square distance between the model and empirical distributions,
in the limit that n is large, when the n observed draws are taken i.i.d. from an alternative
distribution pa = p0 + a/

√
n (as always, p0 is the model — a probability distribution over

m bins — and a is a vector whose m entries satisfy
∑m

j=1 a
(j) = 0). Indeed, Theorem 8.2.1

shows that the desired F is the same as that in (8.16) and (8.34), with the real numbers
σ(1), σ(2), . . . , σ(ℓ) and ζ (1), ζ (2), . . . , ζ (ℓ) calculated as detailed in Section 8.2 (identifying
ℓ = m − 1). Remark 8.3.2 describes an efficient means of evaluating F (x) in (8.16) that is
numerically stable when the right-hand side of (8.31) is not too many orders of magnitude in
size. When the right-hand side of (8.31) is many orders of magnitude in size, we can apply
quadratures to the representation of F (x) in (8.34) instead (see Remark 8.3.8).
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8.5 Plotting the asymptotic statistical power

Let us denote by π the cdf of the P-values for the root-mean-square distance (or, equivalently,
for any positive multiple of the square of the root-mean-square distance); π is also the
statistical power function of the hypothesis test based on the root-mean-square distance (as
a function of the significance level). The method of Section 8.4 is sufficient for plotting π
in the limit that the number of draws is large. Indeed, suppose that X denotes n times the
square of the root-sum-square distance between the model and empirical distributions, F0

denotes the cdf for X when taking n draws i.i.d. from the model probability distribution p0,
and Fa denotes the cdf for X when taking n draws i.i.d. from pa = p0 + a/

√
n, where a is a

vector whose m entries satisfy
∑m

j=1 a
(j) = 0. The P-value P equals 1− F0(X), in the limit

that n is large, and then the cdf π of the P-values for draws from pa is

π(1− F0(x)) = Prob{P ≤ 1− F0(x)} = Prob{1− F0(X) ≤ 1− F0(x)}
= Prob{X ≥ x} = 1− Fa(x) (8.37)

for any nonnegative real number x; thus, the graph of all points (α, π(α)) with α ranging
from 0 to 1 is the same as the graph of all points (1−F0(x), 1−Fa(x)) with x ranging from 0
to ∞, in the limit that n is large. Section 8.4 describes how to evaluate F0(x) and Fa(x) for
any real number x, in the limit that the number n of draws is large; note that F0(x) = Fa(x)
when the entries of a are all zeros, so the procedure of Section 8.4 can evaluate F0(x) as well
as Fa(x). When the entries of a are all zeros, ζ (1) = ζ (2) = · · · = ζ (ℓ) = 0 in the method of
Section 8.4, and then the right-hand side of (8.31) is exactly 1.

8.6 Numerical examples

This section illustrates the algorithms of the present chapter via several numerical examples.
As detailed in the subsections below, we consider three examples for the model p0 (as always,
p0 is a probability distribution over m bins, that is, a vector whose entries are all positive
and satisfy

∑m
j=1 p

(j)
0 = 1), taking n i.i.d. draws from the alternative probability distribution

pa = p0 + a/
√
n, (8.38)

where a is a vector whose m entries satisfy
∑m

j=1 a
(j) = 0 (the subsections below detail several

examples for a). Figure 8.1 plots the cdf π of the P-values for n i.i.d. draws taken from the
alternative distribution pa, when n is large; π is also the statistical power function of the
hypothesis test based on the root-mean-square distance (as a function of the significance
level). For each of the examples, Figure 8.1 plots the cdf π both for n = 1,000,000 draws
(computed via Monte-Carlo simulations) and in the limit that n is large (computed via the
algorithms of the present chapter); not surprisingly, there is little difference between the plots
for n = 1,000,000 and for the limit that n is large. The lines in Figure 8.1 corresponding to
n = 1,000,000 draws are colored green; the lines corresponding to the limit of large n are
black.

Remark 8.6.1. For each example, we computed the cdf π for n = 1,000,000 draws via 40,000
Monte-Carlo simulations. A straightforward argument based on the binomial distribution,
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detailed in Remark 1.3.2, shows that the standard errors of the resulting estimates of the
P-values P are equal to

√

P (1− P )/40000 ≤ 0.0025, ensuring that the standard errors of the

plotted abscissae α for the green points in Figure 8.1 are approximately
√

α(1− α)/40000 ≤
0.0025 (roughly the size of the radii of the plotted points).

Remark 8.6.2. For each example, we plotted the cdf π in the limit of a large number n of
draws via the scheme of Section 8.5. Fig. 8.1 displays points (α, π(α)) = (1−F0(x), 1−Fa(x))
for the 10000 values x = 1/2000, 2/2000, . . . , 10000/2000, in the limit that the number n of
draws is large, where F0(x) and Fa(x) are defined in Section 8.5 and computed to at least
6-digit accuracy via the method of Section 8.4.

Table 8.1 summarizes computational costs of the procedure described in Section 8.4. The
headings of Table 8.1 have the following meanings:

• m is the number of bins in the probability distributions p0 and pa.

• q0 is the maximum number of quadrature nodes required in any of the 10000 evaluations
of F0 plotted in Figure 8.1 (Section 8.5 defines F0), using adaptive Gaussian quadratures
as described in Remark 8.3.2.

• qa is the maximum number of quadrature nodes required in any of the 10000 evalu-
ations of Fa plotted in Figure 8.1 (Section 8.5 defines Fa), using adaptive Gaussian
quadratures as described in Remark 8.3.2.

• t is the time in seconds required to perform the quadratures for both F0(x) and Fa(x)
at a single value of x, amortized over the 10000 pairs (1− F0(x), 1− Fa(x)) plotted in
Figure 8.1 (Section 8.5 defines F0 and Fa).

8.6.1 Uniform model

For our first example, we take
p
(j)
0 = 1/10 (8.39)

for j = 1, 2, . . . , 10, and take
a(j) = (−1)j/5 (8.40)

for j = 1, 2, . . . , 10. The root-mean-square distance is equivalent to the canonical χ2 statistic
for this example, since p0 is a uniform distribution.

8.6.2 Nonuniform model

For our second example, we take

p
(j)
0 =

{
1/2, j = 1

1/198, j = 2, 3, . . . , 100
(8.41)

for j = 1, 2, . . . , 100, and take

a(j) =

{
2/3, j = 1

−2/297, j = 2, 3, . . . , 100
(8.42)

for j = 1, 2, . . . , 100.



140 CHAPTER 8. ASYMPTOTIC POWER

8.6.3 Poisson model

For our third example, we take

p
(j)
0 = e−3 3j−1/(j − 1)! (8.43)

for j = 1, 2, 3, . . . , and take

a(j) =







(−1)j/4, j = 1, 2, 3, 4
(−1)j/2, j = 5, 6

0, j = 7, 8, 9, . . .
(8.44)

for j = 1, 2, 3, . . . . For all numerical computations associated with this example, we can
truncate to the first 20 bins, since

∑∞
j=21 p

(j)
0 < 10−10.

8.6.4 Poisson model with a different alternative

For our fourth example, we again take

p
(j)
0 = e−3 3j−1/(j − 1)! (8.45)

for j = 1, 2, 3, . . . , but now take

a(j) =







1, j = 1
−1/11, j = 2, 3, . . . , 12

0, j = 13, 14, 15, . . .
(8.46)

for j = 1, 2, 3, . . . . For all numerical computations associated with this example, we can
truncate to the first 20 bins, since

∑∞
j=21 p

(j)
0 < 10−10.

Remark 8.6.3. The right-hand side of (8.31) is 8.233 for Subsection 8.6.1, 2.443 for Subsec-
tion 8.6.2, and 24.05 for Subsection 8.6.3. As discussed in Remark 8.3.5, roundoff errors in
the numerical evaluation of (8.16) are therefore guaranteed to be negligible for the standard
floating-point arithmetic (the mantissa in the standard, double-precision arithmetic has a
dynamic range of about 5 · 1015 ≫ 24.05). The right-hand side of (8.31) is 1.478 · 1016 for
Subsection 8.6.4, so we used (8.34) rather than (8.16) for the last example (Remark 8.3.8
explains why).

We used Fortran 77 and ran all examples on one core of a 2.2 GHz Intel Core 2 Duo
microprocessor with 2 MB of L2 cache. Our code is compliant with the IEEE double-precision
standard (so that the mantissas of variables have approximately one bit of precision less
than 16 digits, yielding a relative precision of about 2 · 10−16). We diagonalized the matrix
B defined in (8.7) using the Jacobi algorithm (see, for example, Chapter 8 of Golub and
Van Loan (1996)), not taking advantage of Remark 8.2.2; explicitly forming the entries of
the matrix B defined in (8.7) can incur a numerical error of at most the machine precision

(about 2 · 10−16) times max1≤j≤m p
(j)
0 /min1≤j≤m p

(j)
0 , yielding 6-digit accuracy or better for

all our examples. Higher precision is possible via the interlacing properties of eigenvalues,
following Gu and Eisenstat (1994). Of course, even 4-digit precision would suffice for most
statistical applications; however, modern computers can produce high accuracy very fast, as
the examples in this section illustrate.
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Figure 8.1: Cumulative distribution functions of the P-values P for draws from the alterna-
tive distributions defined in Subsections 8.6.1–8.6.4

Table 8.1: Computational costs

m q0 qa t
example 1 10 230 230 0.006
example 2 100 530 550 0.090
example 3 20 250 330 0.013
example 4 20 350 350 0.010



Appendix A

Significance testing without truth

A popular approach to significance testing proposes to decide whether the given hypothesized
statistical model is likely to be true (or false). Statistical decision theory provides a basis for
this approach by requiring every significance test to make a decision about the truth of the
hypothesis/model under consideration. Unfortunately, many interesting and useful models
are obviously false (that is, not exactly true) even before considering any data. Fortunately,
in practice a significance test need only gauge the consistency (or inconsistency) of the
observed data with the assumed hypothesis/model — without enquiring as to whether the
assumption is likely to be true (or false), or whether some alternative is likely to be true (or
false). In this practical formulation, a significance test rejects a hypothesis/model only if
the observed data is highly improbable when calculating the probability while assuming the
hypothesis being tested; the significance test only gauges whether the observed data likely
invalidates the assumed hypothesis, and cannot decide that the assumption — however
unmistakably false — is likely to be false a priori, without any data.

Essentially, all models are wrong, but some are useful. — G. E. P. Box

A.1 Introduction

As pointed out in the above quotation of G. E. P. Box, many interesting models are false
(that is, not exactly true), yet are useful nonetheless. Significance testing helps measure
the usefulness of a model. Testing the validity of using a model for virtually any purpose
requires knowing whether observed discrepancies are due to inaccuracies or inadequacies in
the model or (on the contrary) could be due to chance arising from necessarily finite sample
sizes. Significance tests gauge whether the discrepancy between the model and the observed
data is larger than expected random fluctuations; significance tests gauge the size of the
unavoidable random fluctuations.

A traditional approach, along with its modern formulation in statistical decision theory,
tries to decide whether a hypothesized model is likely to be true (or false). However, in
many practical circumstances, a significance test need only gauge the consistency (or incon-
sistency) of the observed data with the assumed hypothesis/model — without ever enquiring
as to whether the assumption is likely to be true (or false), or whether some alternative is
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likely to be true (or false). In this practical formulation, a significance test rejects a hypoth-
esis/model only if the observed data is highly improbable when calculating the probability
while assuming the hypothesis being tested. Whether or not the assumption could be exactly
true in reality is irrelevant.

An illustrative example may help clarify. When testing the goodness of fit for the Poisson
regression where the distribution of Y given x is the Poisson distribution of mean exp(θ(0) +
θ(1)x+ θ(2)x2 + θ(3)x3), the conventional Neyman-Pearson null hypothesis is

HNP
0 : there exist real numbers θ(0), θ(1), θ(2), θ(3) such that y1, y2, . . . , yn are draws

from independent Poisson distributions with means µ1, µ2, . . . , µn, respectively, (A.1)

where
ln(µk) = θ(0) + θ(1)xk + θ(2)(xk)

2 + θ(3)(xk)
3 (A.2)

for k = 1, 2, . . . , n, and the observations (x1, y1), (x2, y2), . . . , (xn, yn) are ordered pairs of
scalars (real numbers paired with nonnegative integers). A related, but perhaps simpler null
hypothesis is

H0 : y1, y2, . . . , yn are draws from independent Poisson distributions

with means µ̂1, µ̂2, . . . , µ̂n, respectively, (A.3)

where
ln(µ̂k) = θ̂(0) + θ̂(1)xk + θ̂(2)(xk)

2 + θ̂(3)(xk)
3 (A.4)

for k = 1, 2, . . . , n, with θ̂ being a maximum-likelihood estimate. Needless to say, even if
the observed data really does arise from Poisson distributions whose means are exponentials
of a cubic polynomial, the particular values θ̂(0), θ̂(1), θ̂(2), θ̂(3) of the parameters of the fitted
polynomial will almost surely not be exactly equal to the true values. Even though the
estimated values of the parameters may not be exactly correct, it still makes good sense to
enquire as to whether the fitted cubic polynomial is consistent with the data up to random
fluctuations inherent in using a finite amount of observed data.

In fact, since subsequent use of the model usually involves the particular fitted polynomial
— whose specification includes the observed parameter estimates — analyzing the model
including the estimated values of the parameters makes more sense than trying to decide
whether the data really did come from Poisson distributions whose means are exponentials
of some unspecified cubic polynomial. For instance, any plot of the fit (such as a plot of the
means of the Poisson distributions) must use the estimated values of the parameters, and
any statistical interpretation of the plot should also depend explicitly on the estimates;
a significance test can gauge the consistency of the plotted fit with the observed data,
without ever asking whether the plotted fit is the truth (it is almost surely not identical
to the underlying reality) and without making some decision about an abstract family of
polynomials which may or may not include both the plotted fit and the underlying reality.

A popular measure of divergence from the null hypothesis is the log–likelihood-ratio

g2 = 2
n∑

k=1

yk ln(yk/µ̂k). (A.5)
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A P-value (see, for example, Section A.3 below) quantifies whether this divergence is larger
than expected from random fluctuations inherent in using only n data points. It is not
obvious how to calculate an exact P-value for HNP

0 from (A.1) and (A.2), which refers to
cubic polynomials with undetermined coefficients. In contrast, H0 from (A.3) and (A.4)
refers explicitly to the particular fitted value θ̂; H0 concerns the particular fit displayed in a
plot, and is natural for the statistical interpretation of such a plot.

Thus, when calculating significance, the assumed model should include the particular
values of any parameters estimated from the observed data. Such parameters are known as
“nuisance” parameters. As illustrated with H0 from (A.3) and (A.4), the assumed hypothesis
will be “simple” in the Neyman-Pearson sense, but will depend on the observed values of the
parameters — that is, the hypothesis will be “data-dependent”; the hypothesis will be “ran-
dom.” Including the particular values of the parameters estimated from the observed data
replaces the “composite” hypothesis of the conventional Neyman-Pearson formulation with
a “simple” data-dependent hypothesis. As discussed in Section A.4 below, fully conditional
tests also incorporate the observed values of the parameters, but make the extra assumption
that all possible realizations of the experiment — observed or hypothetical — generate the
same observed values of the parameters. The device of a “simple data-dependent hypothesis”
such as H0 incorporates the observed values explicitly without the extra assumption.

For most purposes, a parameterized model is not really operational — that is, suitable
for making precise predictions — until its specification is completed via the inclusion of
estimates for any nuisance parameters. The results of the significance tests considered below
depend on the quality of both the models and the parameter estimators. However, the results
are relatively insensitive to the particular observed realizations of the parameter estimators
(that is, to the parameter estimates) unless specifically designed to quantify the quality of
the parameter estimates. To quantify the quality of the parameter estimates, we recommend
testing separately the goodness of fit of the parameter estimates, using confidence intervals,
confidence distributions, parametric bootstrapping, or significance tests within parametric
models, whose statistical power is focused against alternatives within the parametric family
constituting the model (for further discussion of the latter, see Section A.5 below).

The remainder of the present appendix has the following structure: Section A.2 very
briefly discusses Bayesian-frequentist hybrids, referring for details to the definitive work
of Gelman (2003). Section A.3 defines P-values — also known as “attained significance levels”
— which quantify the consistency of the observed data with the assumed models. Section A.4
details several approaches to testing the goodness of fit for distributional profile. Section A.5
discusses testing the goodness of fit for various properties beyond just distributional profile.

Cox (2006) details many advantages of interpreting significance as gauging the consistency
of an assumption/hypothesis with observed data, rather than as making decisions about the
actual truth of the assumption. However, significance testing is meaningless without any
observations, unlike purely Bayesian methods, which can produce results without any data,
courtesy of the prior (the prior is the statistician’s system of a priori beliefs, accumulated
from prior experience, law, morality, religion, etc., without reference to the observed data).
Significance tests are deficient in this respect. Those interested in what is to be considered
true in reality and in making decisions more generally should use Bayesian, sequential, and
multilevel procedures. Significance testing simply gauges the consistency of models with
observed data; generally significance testing alone cannot handle the truth.
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A.2 Bayesian versus frequentist

Traditionally, significance testing is frequentist. However, there exist Bayesian-frequentist
hybrids known as “Bayesian P-values”; Gelman (2003) sets forth a particularly appealing
formulation. Bayesian P-values test the consistency of the observed data with the model
used together with a prior for nuisance parameters. In contrast, the P-values discussed in the
present appendix test the consistency of the observed data with the model used together with
a parameter estimator. In the Bayesian formulation, a small P-value reflects inconsistency
with the model and/or the prior; in the formulation of the present appendix, a small P-value
reflects inconsistency with the model and/or the parameter estimator. Thus, when there are
nuisance parameters, the two types of P-values test slightly different hypotheses and provide
slightly different information; each type is ideal for its own set-up. Of course, if there are
no nuisance parameters, then Bayesian P-values and the P-values discussed below are the
same.

A.3 P-values

A P-value for a hypothesis H0 is a statistic such that, if the P-value is very small, then
we can be confident that the observed data is inconsistent with assuming H0. The P-value
associated with a measure of divergence from a hypothesis H0 is the probability that D ≥ d,
where d is the divergence between the observed and the expected (with the expectation
following H0 for the observations), and D is the divergence between the simulated and the
expected (with the expectation following H0 for the simulations, and with the simulations
performed assuming H0). When taking the probability that D ≥ d, we view D as a random
variable, while viewing d as fixed, not random. For example, when testing the goodness of
fit for the model of i.i.d. draws from a probability distribution p0(θ), where θ is a nuisance
parameter that must be estimated from the data, that is, from observations x1, x2, . . . , xn,
we use the null hypothesis

H0 : x1, x2, . . . , xn are i.i.d. draws from p0(θ̂),where θ̂ = θ̂(x1, x2, . . . , xn). (A.6)

The P-value for H0 associated with a divergence δ is the probability that D ≥ d, where

• d = δ(p̂, p0(θ̂)),

• p̂ is the empirical distribution of x1, x2, . . . , xn,

• θ̂ is the parameter estimate obtained from the observed draws x1, x2, . . . , xn,

• D = δ(P̂, p0(Θ̂)),

• P̂ is the empirical distribution of i.i.d. draws X1, X2, . . . , Xn from p0(θ̂), and

• Θ̂ is the parameter estimate obtained from the simulated draws X1, X2, . . . , Xn.

If the P-value is very small, then we can be confident that the observed data is inconsistent
with assuming H0. Examples of divergences include χ2 (for categorical data) and the maxi-
mum absolute difference between cumulative distribution functions (for real-valued data).
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Remark A.3.1. To compute the P-value assessing the consistency of the experimental
data with assuming H0, we can use Monte-Carlo simulations (very similar to those used
by Clauset et al. (2009)). First, we estimate the parameter θ from the n given experimental
draws, obtaining θ̂, and calculate the divergence between the empirical distribution and
p0(θ̂). We then run many simulations. To conduct a single simulation, we perform the
following three-step procedure:

1. we generate n i.i.d. draws according to the model distribution p0(θ̂), where θ̂ is the
estimate calculated from the experimental data,

2. we estimate the parameter θ from the data generated in Step 1, obtaining a new
estimate θ̃, and

3. we calculate the divergence between the empirical distribution of the data generated in
Step 1 and p0(θ̃), where θ̃ is the estimate calculated in Step 2 from the data generated
in Step 1.

After conducting many such simulations, we may estimate the P-value for assuming H0 as
the fraction of the divergences calculated in Step 3 that are greater than or equal to the
divergence calculated from the empirical data. The accuracy of the estimated P-value is
inversely proportional to the square root of the number of simulations conducted; in fact,
the standard error of the estimate for an exact P-value P is

√

P (1− P )/ℓ, where ℓ is the
number of Monte-Carlo simulations conducted to produce the estimate — see Remark 1.3.2.

A.4 Goodness of fit for distributional profile

Given observations x1, x2, . . . , xn, we can test the goodness of fit for the model of i.i.d.
draws from a probability distribution p0(θ), where θ is a nuisance parameter, via the null
hypothesis

H0 : x1, x2, . . . , xn are i.i.d. draws from p0(θ̂)

for the particular observed value of θ̂ = θ̂(x1, x2, . . . , xn). (A.7)

The Neyman-Pearson formulation considers instead the null hypothesis

HNP
0 : there exists a value of θ such that x1, x2, . . . , xn are i.i.d. draws from p0(θ). (A.8)

The fully conditional null hypothesis is

HFC
0 : x1, x2, . . . , xn are i.i.d. draws from p0(θ̂)

and θ̂ = θ̂(x1, x2, . . . , xn) takes the same value in all possible realizations. (A.9)

That is, whereas H0 supposes that the particular observed realization of the experiment
happened to produce a parameter estimate θ̂ that is consistent with having drawn the data
from p0(θ̂), H

FC
0 assumes that every possible realization of the experiment — observed or

hypothetical — produces exactly the same parameter estimate. Few experimental apparatus
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constrain the parameter estimate to always take the same (a priori unknown) value during
repetitions of the experiment, as HFC

0 assumes. Assuming HFC
0 amounts to conditioning on a

statistic that is minimally sufficient for estimating θ; computing the associated P-values is not
always trivial. Furthermore, the assumption that HFC

0 is true seems to be more extreme, a
more substantial departure from HNP

0 , than H0. Finally, testing the significance of assuming
H0 would seem to be more apropos in practice for applications in which the experimental
design does not enforce that repeated experiments always yield the same value for p0(θ̂). We
cannot recommend the use ofHFC

0 in general. Unfortunately, HNP
0 also presents problems. . . .

If the probability distributions are discrete, many definitions of the exact P-value forHNP
0

involve the actual value of the parameter θ when HNP
0 is true (even though the observed

data may not determine this value exactly), leaving the P-value undefined when HNP
0 is false.

An alternative “P-value” is the maximum (or supremum) of P-values calculated separately
for every possible value of the parameter; the resulting “maximum” P-value for HNP

0 then
may not have the desirable asymptotic property discussed in Remark A.4.1 below — a
property that many consider necessary to merit the designation “P-value,” as discussed
by Bayarri and Berger (2000), Gelman (2003), Robins et al. (2000), and many others. The
situation may be more favorable when measuring discrepancies with divergences that are
“approximately ancillary” with respect to θ, but quantifying the notion of “approximately”
seems to be problematic except in the limit of large numbers of draws. (Some divergences
are asymptotically ancillary in the limit of large numbers of draws, but this is not especially
helpful, as any asymptotically consistent estimator θ̂ converges to the correct value in the
limit of large numbers of draws; θ is almost surely known exactly in the limit of large
numbers of draws, so there is not too much benefit to being independent of θ only in that
limit.) Section 3 of Robins and Wasserman (2000) reviews these and related issues.

Remark A.4.1. Romano (1988), Henze (1996), Bickel et al. (2006), and others have shown
that the P-values for H0 converge in distribution to the uniform distribution over [0, 1] in the
limit of large numbers of draws, when HNP

0 is true. In particular, Romano (1988) and Henze
(1996) prove this convergence for a wide class of divergence measures.

Remark A.4.2. For any family p0(θ) of discrete probability distributions parameterized by
a permutation θ that specifies the order of the bins (meaning that there exists a discrete

probability distribution q such that p
(j)
0 (θ) = q(θ(j)) for all j), and for any number n of

draws, the P-values for the null hypothesis H0 from (A.7) have the following highly desirable
property: Suppose that the actual underlying distribution p of the i.i.d. experimental draws
is equal to p0(θ) for some (unknown) θ. Suppose further that P is the P-value for assuming
p = p0(θ̂) for the observed value of θ̂, calculated for a particular realization of the experiment.
Consider repeating the same experiment over and over, and calculating the P-value for each
realization, each time using that realization’s particular maximum-likelihood estimate of the
parameter in the hypothesis p = p0(θ̂). Then, the fraction of the P-values that are greater
than or equal to P is equal to P in the limit of many repetitions of the experiment. This
property also holds when there is no parameter in the model. Furthermore, the P-values for
H0 from (A.7) can be viewed as a parametric bootstrap approximation even if the parameter
θ is not a permutation, as discussed in the preceding remark.

Remark A.4.3. The surveys of Agresti (1992) and Agresti (2001) discuss exact P-values
for contingency-tables/cross-tabulations, including criticism of fully conditional P-values.
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Gelman (2003) provides further criticism of fully conditional P-values. Chapter 3 numerically
evaluates the different types of P-values for an application in population genetics. Section 4
of Bayarri and Berger (2004) and the references it cites discuss the menagerie of alternative
P-values proposed recently.

A.5 Goodness of fit for various properties

For comparative purposes, we first review the null hypothesis of the previous section for
testing the goodness of fit for distributional profile, namely

H0 : x1, x2, . . . , xn are i.i.d. draws from p0(θ̂),where θ̂ = θ̂(x1, x2, . . . , xn), (A.10)

with θ being the nuisance parameter. The measure of discrepancy for H0 is usually taken to
be a divergence between the empirical distribution p̂ and the model p0(θ̂) (in the continuous
case in one dimension, a common characterization of the empirical distribution is the empir-
ical cumulative distribution function; in the discrete case, a common characterization of the
empirical distribution is the empirical probability mass function, that is, the set of empirical
proportions). One example for p0 is the Zipf distribution over m bins with parameter θ, a
discrete distribution with the probability mass function

p
(j)
0 (θ) =

Cθ

jθ
(A.11)

for j = 1, 2, 3, . . . , m, where the normalization constant is

Cθ =
1

∑m
j=1 j

−θ
(A.12)

and θ is a nonnegative real number.
When testing the goodness of fit for parameter estimates, we use the null hypothesis

H ′
0 : x1, x2, . . . , xn are i.i.d. draws from p0(ϕ0, θ̂),where θ̂ = θ̂(x1, x2, . . . , xn), (A.13)

with θ being the nuisance parameter and ϕ being the parameter of interest (and with ϕ0

being the value of ϕ assumed under the model). Please note that H0 and H ′
0 are actually

equivalent, via the identification p0(θ) = p0(ϕ0, θ). However, the measure of discrepancy for
H ′

0 is usually taken to be a divergence between ϕ̂ and ϕ0 rather than the divergence between
p̂ and p0(θ̂) that is more natural for H0. Also, if ϕ is scalar-valued, then confidence intervals,
confidence distributions, and parametric bootstrap distributions are more informative than
a significance test. A significance test is appropriate if ϕ is vector-valued. One example
for p0 is the sorted Zipf distribution over m bins with θ being the power in the power law
and with the maximum-likelihood estimate ϕ̂ being a permutation that sorts the bins into
rank-order, that is, p0 is the discrete distribution with the probability mass function

p
(j)
0 (ϕ, θ) =

Cθ

(ϕ(j))θ
(A.14)
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for j = 1, 2, 3, . . . , m, where the normalization constant Cθ is defined in (A.12) with θ
being a nonnegative real number, and ϕ is a permutation of the numbers 1, 2, . . . , m. The
choice for ϕ0 that is of widest interest in applications is the identity permutation (i.e., the
“rearrangement” of the bins that does not permute any bins: ϕ0(j) = j for j = 1, 2, . . . , m).

When testing the goodness of fit for the standard Poisson regression with the distribution

of Y given x being the Poisson distribution of mean exp
(

θ(0) +
∑m

j=1 θ
(j)x(j)

)

, we use the

null hypothesis

H ′′
0 : y1, y2, . . . , yn are draws from independent Poisson distributions with means

exp

(

θ̂(0) +
m∑

j=1

θ̂(j)x
(j)
1

)

, exp

(

θ̂(0) +
m∑

j=1

θ̂(j)x
(j)
2

)

, . . . , exp

(

θ̂(0) +
m∑

j=1

θ̂(j)x(j)
n

)

,

respectively, (A.15)

where θ is the nuisance parameter and θ̂ is its maximum-likelihood estimate. The measure
of discrepancy for H ′′

0 is usually taken to be the log–likelihood-ratio (also known as the
deviance)

g2 = 2
n∑

k=1

yk ln(yk/µ̂k), (A.16)

where µ̂k is the mean of the Poisson distribution associated with yk in H ′′
0 , namely,

µ̂k = exp

(

θ̂(0) +
m∑

j=1

θ̂(j)x
(j)
k

)

. (A.17)

One example is the cubic polynomial

ln(µk) = θ(0) + θ(1)xk + θ(2)(xk)
2 + θ(3)(xk)

3 (A.18)

for k = 1, 2, . . . , n, which comes from the choice m = 3 and

x
(1)
k = xk; x

(2)
k = (xk)

2; x
(3)
k = (xk)

3 (A.19)

for k = 1, 2, . . . , n, given observations as ordered pairs of scalars (x1, y1), (x2, y2), . . . ,
(xn, yn). Of course, there are similar formulations for other generalized linear models, such
as those discussed by McCullagh and Nelder (1989). Chapter 5 above discusses logistic
regression, too.
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