
Conditioning on and controlling for variates via
cumulative differences

Measuring calibration, reliability, biases,
and other treatment effects

Mark Tygert

Meta

mark@tygert.com



Calibration and reliability
Fairness and matching scores

Extensions

Outline

1 Calibration and reliability
Probabilistic predictions
Cumulative differences
Binned responses

2 Fairness and matching scores
Deviation of a subpopulation from the full pop.
Deviation between two disjoint subpopulations
Controlling for multiple covariates

3 Extensions
Weighted sampling
Avoiding randomization
Interactive plots

Mark Tygert Conditioning & controlling via cumulative differences 2 / 70



Calibration and reliability
Fairness and matching scores

Extensions

Probabilistic predictions
Cumulative differences
Binned responses

Calibration and reliability

Calibration and reliability

Mark Tygert Conditioning & controlling via cumulative differences 3 / 70



Calibration and reliability
Fairness and matching scores

Extensions

Probabilistic predictions
Cumulative differences
Binned responses

Probabilistic predictions

Probabilistic predictions

Mark Tygert Conditioning & controlling via cumulative differences 4 / 70



Calibration and reliability
Fairness and matching scores

Extensions

Probabilistic predictions
Cumulative differences
Binned responses

Predictions with a given probability

1 Consider an S = 30% chance of snow.

2 The reality will be either R = 1 (it actually did snow) or
R = 0 (it did not snow).

3 A random variable R which follows the Bernoulli distribution
with expected value S takes R = 1 with probability S and
R = 0 with probability 1− S .

4 Given n independent random results, also known as
“responses,” R1, R2, . . . , Rn, the prediction is perfectly
calibrated if S = 30% of R1, R2, . . . , Rn are equal to 1, and
the rest are equal to 0.
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Predictions with different probabilities

1 Probabilities of success S1, S2, . . . , Sn; the probabilities are
the expected values of Bernoulli distributions.

2 Responses R1, R2, . . . , Rn; the responses are independent
Bernoulli random variables (Rk and Sk come as a pair).

3 Probabilities of success are also known as “scores” and will be
viewed as deterministic during this tutorial.

4 Responses are also known as “results” or “outcomes” and
viewed as random and probabilistically independent.

5 Goal: gauge deviation of the responses from the scores.
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Without loss of generality

1 Re-order the indices such that S1 ≤ S2 ≤ · · · ≤ Sn, preserving
the pairing of Rk with Sk for every k = 1, 2, . . . , n.

2 Randomly perturb the scores such that S1 < S2 < · · · < Sn if
the inequalities were not already strict.

3 There exists an alternative to this random perturbation that is
more complicated but that avoids randomization altogether.
Anyone interested can consult the later section, “Extensions,”
specifically its subsection, “Avoiding randomization.”

Mark Tygert Conditioning & controlling via cumulative differences 7 / 70



Calibration and reliability
Fairness and matching scores

Extensions

Probabilistic predictions
Cumulative differences
Binned responses

Cumulative differences

Cumulative differences

Mark Tygert Conditioning & controlling via cumulative differences 8 / 70



Calibration and reliability
Fairness and matching scores

Extensions

Probabilistic predictions
Cumulative differences
Binned responses

Cumulative aggregation

The cumulative difference of responses from scores is

Ck =
1

n

k∑
j=1

(Rj − Sj) (1)

for k = 1, 2, . . . , n.

The expected slope of a graph of Ck versus k/n from j = k − 1 to
j = k is

E[Ck − Ck−1]

k/n − (k − 1)/n
= E[Rk ]− Sk (2)

for k = 1, 2, . . . , n; this E[Rk ]− Sk is the expected difference
from perfect calibration.
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Miscalibration is slope

1 The slope of a secant line connecting two points on the graph
of Ck versus k/n becomes the average miscalibration over the
long range of k between those points. This follows from
combining the law of large numbers with the last formula on
the previous slide.

2 Slope is easy to perceive with quantitative precision even
when the constant offsets of the secant lines are irrelevant.

3 Miscalibration at an index k of interest determines the slope,
unpolluted by accumulation from indices other than that of
interest (the other indices affect only the constant offset).
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Empirical plot with n = 215 = 32,768
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Plot of the ground truth
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Kolmogorov-Smirnov and Kuiper metrics

1 Good calibration corresponds to a flat, horizontal graph.

2 Deviation from flat and horizontal measures miscalibration.

3 Two scalar statistics which summarize the deviations from 0
are the max. absolute deviation and the range of deviations.

4 The max. absolute deviation is Kolmogorov’s and Smirnov’s

CMAD = max
1≤k≤n

|Ck |. (3)

5 The range of deviations is Kuiper’s

Crange = max
0≤k≤n

Ck − min
0≤k≤n

Ck , (4)

where C0 = 0.
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Another expression for the Kuiper metric

The absolute value of the total miscalibration
∑

j∈I (Rj − Sj)/n
over any interval I of indices is less than or equal to Crange; indeed,
the Kuiper metric Crange is equal to the maximum of the absolute
value of the total miscalibration over any interval of indices:

Crange = max
I

∣∣∣∣∣∣1n
∑
j∈I

(Rj − Sj)

∣∣∣∣∣∣ , (5)

where the maximum is taken over every interval I of indices;
summing over the index j ∈ I means summing over the indices
j = min I , 1 + min I , 2 + min I , 3 + min I , . . . , max I .
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Significance testing

1 The P-value for a given assertion asserting a null hypothesis is
the probability that a specified measure of deviation from the
assertion is greater than or equal to that measure for the
actual observations. The metric could be Crange, for example.

2 The null hypothesis relevant here is of perfect calibration,
namely that every response Rk comes from the Bernoulli
distribution whose expected value is the associated score Sk .

3 A small P-value indicates that the observations are
inconsistent with the assertion (the null hypothesis).

4 If P is the P-value, then 1− P is the attained confidence level
for believing the assertion (the null hypothesis). This value
1− P is not exactly the probability of the null hypothesis
being true, but is a monotonically increasing function of such
a probability, for most formalizations of such a probability.
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P-values

1 Under the null hypothesis of perfect calibration E[Rk ] = Sk
for k = 1, 2, . . . , n, CMAD/σ converges in distribution to the
max. absolute value of the standard Brownian motion over
[0, 1], and Crange/σ converges in distribution to the Brownian
motion’s range, where σ2 is the total expected variance

σ2 =
n∑

k=1

Sk(1− Sk)

n2
, (6)

assuming that max1≤k≤n Sk(1− Sk)/
∑n

j=1 Sj(1− Sj)
converges to 0 as n becomes arbitrarily large.

2 CMAD is 0.01243/σ = 5.512, Crange is 0.02291/σ = 10.16,
and the corresponding asymptotic P-values are 7.1E–08 and
less than the machine precision, for the earlier example.
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Why Brownian motion?

1 Under the null hypothesis of perfect calibration, the graph of
the line segments connecting (S0,C0), (S1,C1), . . . , (Sn,Cn)
are the definition of a driftless random walk (driftless means
that the expected value of Ck − Ck−1 = (Rk − Sk)/n is 0 for
all k = 1, 2, . . . , n, which follows from the null hypothesis
that the expected value of Rk is Sk). The graph of the line
segments converges in distribution to the graph of Brownian
motion, under the condition on the previous slide (as n → ∞).

2 The variance of a Bernoulli distribution whose expected value
is Sk is Sk(1− Sk). The variance of a sum of independent
random variables is the sum of the variances of the random
variables. Therefore, the variance of Cn =

∑n
k=1(Rk − Sk)/n

is σ2 defined on the previous slide. Dividing by σ standardizes
the Brownian motion to be over the unit interval [0, 1].
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Error bars

1 The standard deviation of the standard Brownian motion over
the unit interval [0, 1] ranges from 0 at 0 to 1 at 1.

2 The cumulative graphs plot the cumulative differences without
normalizing by σ; standardizing the Brownian motion
associated with the cumulative graphs would require
normalization by σ.

3 The cumulative plots (including the two from earlier slides)
display a triangle at the origin whose tip-to-tip height is 4σ,
corresponding to a roughly 95% confidence interval.

4 The triangle at the origin indicates the length scale of
statistically significant deviations from zero, effectively
showing the effect of normalization by σ.
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Binning (instead of the newer cumulative approach)

S1
1 < S2

1 < · · · < Sn1
1 will be the least n1 of the scores,

S1
2 < S2

2 < · · · < Sn2
2 will be the next n2 of the scores, . . . ,

S1
m < S2

m < · · · < Snm
m will be the greatest nm of the scores.

Maintain n =
∑m

j=1 nj and calculate the average score

S̃j =
1

nj

nj∑
k=1

Sk
j (7)

and the average response

R̃j =
1

nj

nj∑
k=1

Rk
j (8)

for j = 1, 2, . . . , m.
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Reliability diagram

The “reliability diagram” is the graph of the average response R̃j

versus the average score S̃j , together with a diagonal line from the
origin (0, 0) to the point (1, 1); the diagonal line corresponds to
perfect calibration, for which the response is equal to the score.
The reliability diagram is the traditional graphical method for
assessing calibration.

Mark Tygert Conditioning & controlling via cumulative differences 21 / 70



Calibration and reliability
Fairness and matching scores

Extensions

Probabilistic predictions
Cumulative differences
Binned responses

Same range of probabilities for each bin, 4–32 bins

m = 22
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Same range of probabilities for each bin, 64–256 bins

m = 26
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Same number of responses for each bin, 4–32 bins
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Same number of responses for each bin, 64–256 bins

m = 26
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Empirical calibration errors

The empirical calibration errors (ECEs) are the Riemann sums

ECE1 =
m∑
j=1

(S1
j+1 − S1

j )
∣∣∣R̃j − S̃j

∣∣∣ = m∑
j=1

(S1
j+1 − S1

j )

∣∣∣∣∣
nj∑

k=1

Rk
j − Sk

j

nj

∣∣∣∣∣
(9)

and

ECE2 =
m∑
j=1

(S1
j+1−S1

j )
∣∣∣R̃j − S̃j

∣∣∣2= m∑
j=1

(S1
j+1−S1

j )

∣∣∣∣∣
nj∑

k=1

Rk
j − Sk

j

nj

∣∣∣∣∣
2

(10)
where S1

m+1 = 1, and the bin width (S1
j+1 − S1

j ) can be replaced
with 1/m when the average scores are roughly equispaced on [0, 1].
The ECEs are the traditional metrics for assessing calibration.
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Integrated calibration index (ICI) = ECE

While “ECE” is the accepted standard terminology, biostatisticians
have recently re-introduced the ECE, referring to the ECE as the
“integrated calibration index” (ICI). There is now a large literature
that uses “ICI” rather than “ECE.”

Beware, too, that the abbreviation, “ECE,” can refer to
“empirical,” “estimated,” “expected,” or “experimental”
calibration errors; all these possibilities for the first letter in “ECE”
pertain to the same mathematical formulas from the previous slide.
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ECEs vary wildly with the choice of bins

n = 215; earlier, the scores were square rooted from equispaced.
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Comparison of ECEs to cumulative summary statistics

1 If the number of observations per bin stays bounded on a set
interval of scores as the max. width of a bin converges to 0,
then the ECEs hit a noise floor, which prevents the ECEs from
distinguishing a fixed imperfectly calibrated distribution from
perfect calibration, even in the limit of infinite sample size n.

2 This highlights a trade-off inherent to binning (or kernel
density estimation) — decreasing the width of bins or kernels
resolves finer variations as a function of score at the expense
of averaging away less noise, while increasing the width of bins
sacrifices resolving power but boosts statistical confidence.

3 The cumulative statistics Crange and CMAD of Kuiper and of
Kolmogorov and Smirnov have no such explicit trade-off.
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Fairness and matching scores

Fairness and matching scores
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Deviation of a subpopulation from the full pop.

Deviation of a subpopulation from
the full pop.

Mark Tygert Conditioning & controlling via cumulative differences 31 / 70



Calibration and reliability
Fairness and matching scores

Extensions

Deviation of a subpopulation from the full pop.
Deviation between two disjoint subpopulations
Controlling for multiple covariates

Fairness for a subpopulation

1 Goal: gauge deviation of the responses of the subpopulation
from those of the full population.

2 Compare only individuals who are comparable.

3 Use the scores to match up individuals being compared.

4 Deviation of the subpopulation from the full population may
indicate inequities in or other effects on outcomes or
treatment of members of the subpopulation.

5 Comparing individuals conditional on their scores ensures that
the score variate is not the cause of differences detected.

6 Examples of scores in medicine and the social sciences include
age, income, or predicted probability (as with calibration).
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Respecting the subpopulation’s sampling

1 In addition to the scores S1 < S2 < · · · < Sp and
corresponding responses R1, R2, . . . , Rp for a full population
of p individuals, consider a subpopulation specified by n
indices i1 < i2 < · · · < in.

2 Define R̃ik to be the average of the full population’s responses
whose corresponding scores are closer to Sik than to any other
of the subpopulation’s scores Si1 , Si2 , . . . , Sin .

3 Calculate the cumulative differences

Cj =
1

n

j∑
k=1

(
Rik − R̃ik

)
(11)

for j = 1, 2, . . . , n.
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Slope is deviation of the subpop. from the full pop.

The expected slope of a graph of Ck versus k/n from j = k − 1 to
j = k is

E[Ck − Ck−1]

k/n − (k − 1)/n
= E[Rik ]− E[R̃ik ] (12)

for k = 1, 2, . . . , n; this E[Rik ]− E[R̃ik ] is the expected deviation
of the subpopulation from the full population.

The slope of a secant line connecting two distant points on the
graph is the average deviation of the subpopulation from the full
population over the subpopulation’s indices between those points.

This analyzes the difference of the subpopulation’s responses from
the full population’s while “controlling for” (also known as
“conditioning on”) scores, matching individuals with similar scores.
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Wild boars vs. full ImageNet

The next two slides display reliability diagrams and cumulative
graphs for the difference in accuracy of classification for a
subpopulation from the full population in popular training data
from computer vision known as ImageNet. The black points and
lines correspond to the images of wild boars in ImageNet, while the
gray points and lines correspond to the full data set. The score is
the predicted probability corresponding to the class predicted to be
most likely; the score is a measure of confidence in the prediction.
The reliability diagrams vary significantly as the number of bins
varies, while the cumulative graphs are reasonably easy to interpret;
in particular, the drop-off for the highest scores is easy to quantify
in the cumulative graphs. The reliability diagrams might even look
inconsistent with each other without looking at the cumulative
graphs (the latter resolve the inconsistencies at a glance).
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Wild boars vs. full ImageNet (same width for each bin)
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Wild boars vs. full ImageNet (adaptive widths of bins)
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Wild boars’ empirical calibration errors

101 102 103

m (number of bins)

0.10
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ECE1 for the standard reliability diagram
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m (number of bins)
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ECE2 for the standard reliability diagram
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What is the right choice of bins? Which is the right value for m?
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Deviation between two disjoint subpopulations

Deviation between two disjoint
subpopulations
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Caveats

1 Comparing a subpopulation to the full population while
controlling for scores is always legitimate — every member of
the subpopulation matches up with at least one member of
the full population, namely, that very same member (that is
the very definition of “sub-population”!).

2 Comparing different subpopulations directly might be absurd.
Indeed, the scores for one subpopulation might even all be less
than all the scores for another subpopulation; there is no way
to match up members according to score in such a case.

3 Nevertheless, it can make sense to compare subpopulations
directly (rather than via the individual subpopulations’
deviations from the full population). An example is comparing
the subpopulation of individuals who received a certain
medical treatment to the untreated subpopulation.
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Finest-possible binning

score
S0 S S S S S S S S S S S S S0 0 1 0 1 0 1 1 0 1 0 1

0 0 1 3 3 4 4 5 8 8 9 9
1

2 2 S0
5S1

1
1S7

0
7SS0

6S6
1

R0 R R R R R R R R R R R R R0 0 1 0 1 0 1 1 0 1 0 1
0 0 1 3 3 4 4 5 8 8 9 9

1
2 2 R0

5R1
1

1R7
0
7RR0

6R6
1

= 0
score

= 1

1 The crosses (“x”) indicate the scores for subpopulation 0
while the circles (“o”) indicate the scores for subpopulation 1.

2 The averages of the scores for subpopulation k corresponding
to the indicated blocks of observed scores are Sk

0 , S
k
1 , . . . , S

k
9 ,

for k = 0, 1.

3 The averages of the responses for subpop. k corresponding to
the indicated blocks of observed scores are Rk

0 , R
k
1 , . . . , R

k
9 ,

for k = 0, 1.
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Average forward and backward differences

Define D2k to be the average of the even indexed forward and
backward differences and D2k+1 to be the average of the odd
indexed forward and backward differences:

2

R0
k Rk

1 R0
k+1

2

D k

+1k+1

D k2 +1

R1
k R0 R1

2

k
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Accumulation of averaged differences

Define the cumulative differences

Cj =
1

n

j−1∑
k=0

Dk (13)

for j = 1, 2, . . . , n.

The graph of Ck versus k/n and the metrics CMAD and Crange —
defined via the same formulas (3) and (4) as on slide 13 above —
admit interpretations analogous to those discussed on earlier slides
for the related settings treated there.
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Controlling for multiple covariates

Controlling for multiple covariates
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Multiple covariates require multiple dimensions

1 “Covariates” is yet another name for the “input variables,”
“independent variables,” or “control variables” in a regression.

2 Earlier slides considered only a single real-valued covariate;
the scores specified the values of the covariate.

3 When there are multiple real-valued covariates, their values fill
a multidimensional vector space; denoting by d the number of
scalar covariates, the vector space of all their possible values
will be d-dimensional.

4 There is a natural notion of locality in d dimensions that
looks over all possible length scales, hierarchically organizing
d-dimensional space into the canonical “dyadic tree” defined
on the following slide.
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Dyadic trees

1 The dyadic tree in a
d-dimensional vector space is the
partition of space obtained by
recursively subdividing equally
along every coordinate axis
during every split.

2 In one dimension, the canonical
dyadic tree is the balanced binary
tree. In two dimensions, the
canonical dyadic tree is the
canonical quad tree. In three
dimensions, the canonical dyadic
tree is the canonical oct tree.

five levels of the canonical
binary tree:

four levels of the canonical
quad tree:
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Hilbert space-filling curves

The Hilbert curve puts a total order on the unit hypercube [0, 1]d

via the depth-first traversal of the canonical 2d -ary (dyadic) tree.
With d = 2, an approximation with 255 line segments is
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Reduction to one dimension

A space-filling curve h (e.g., Hilbert’s) maps continuously from the
unit interval [0, 1] onto (surjectively) the unit hypercube [0, 1]d .
This ensures that, given a function f on the unit hypercube [0, 1]d ,
local averages of the composition f ◦ h are also local averages of f ;
as usual, the definition of the composition is (f ◦ h)(t) = f (h(t))
for all t in the unit interval [0, 1].

Given points in the unit hypercube [0, 1]d , use the Hilbert curve to
map each of the points to a score in the unit interval [0, 1], then
use the methods of the earlier slides with these scalar scores.
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Hilbert-curve score for folding or normal as brightness

folding mailings plotted on top of normal mailings
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Cumulative diffs. between folding and normal mailings

0.07 0.20 0.22 0.29 0.31 0.37 0.40 0.41 0.49 0.52
score (S0

(k 1)/2 or S1
(k 2)/2)

0.08
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0.00
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C k
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k/n

subpop. deviation is the slope as a function of k/n
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Description of the data (skip these details)

1 In 1994, a national veterans organization mailed folding cards
to n0 = 1,236 prospective donors and mailed normal cards to
n1 = 15,866.

2 The responses (indicating whether the recipients responded to
the solicitation or not), together with covariates such as age
and average household income in the associated Census block,
formed the core of the data for the 1998 KDD Cup.

3 The combined sample size derived from the diagram on
slide 41 is n = 2,279 (rather than the n = 20 on slide 41).
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Weighted sampling

Weighted sampling
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Graphs for weighted samples (skip if low on time)

All methods generalize to weighted sampling; in weighted samples
each pair of score Sk and response Rk comes with a positive real
number Wk . The ordinates (vertical coordinates) become

Cj =

∑j
k=1(Rik − R̃ik )Wik∑n

k=1Wik

(14)

(with R̃ik := Sik and ik := k when assessing calibration) and the
abscissae (horizontal coordinates) become

Aj =

∑j
k=1Wik∑n
k=1Wik

(15)

for j = 1, 2, . . . , n.
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P-values for weighted samples (skip if low on time)

1 The interpretation of slope in the graph of Ck versus Ak is the
same as in the case of unweighted sampling.

2 P-values for the maximum absolute value of C1, C2, . . . , Cn

and for the range of C0, C1, . . . , Cn arise similarly, courtesy of
convergence in distribution to the maximum absolute value or
range of the standard Brownian motion over [0, 1], as before.

3 For example, formula (6) on slide 16 above, giving the
standard deviation under the null hypothesis of perfect
calibration (so that R̃ik := Sik and ik := k), becomes

σ =

√∑n
k=1 Sk(1− Sk) (Wk)2∑n

k=1Wk
. (16)
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Avoiding randomization

Avoiding randomization
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Slight random perturbations (skip if low on time)

1 If any of the inequalities S1 ≤ S2 ≤ · · · ≤ Sn were not strict,
one possibility would be to perturb the scores at random such
that the scores become all distinct from each other, so that
S1 < S2 < · · · < Sn. Slide 7 suggested this approach.

2 To describe another possibility, we can keep the notation
S1 < S2 < · · · < Sn while denoting the responses and weights

for nk repetitions of score Sk by R
(1)
k , R

(2)
k , . . . , R

(nk )
k and

W
(1)
k , W

(2)
k , . . . , W

(nk )
k (so then the total number of

observations is
∑n

k=1 nk).
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A new data set (skip if low on time)

We construct a new data set, with the response being the weighted
average

Rk =

∑nk
j=1 R

(j)
k W

(j)
k∑nk

j=1W
(j)
k

(17)

and the weight being the sum

Wk =

nk∑
j=1

W
(j)
k (18)

for k = 1, 2, . . . , n.
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Cumulative differences stay the same (skip if low on time)

1 The cumulative differences for the new data set are

Bℓ =

∑ℓ
k=1(Rk − r(Sk))Wk∑n

k=1Wk
(19)

for ℓ = 1, 2, . . . , n, with r(Sk) = Sk for gauging calibration.

2 The cumulative differences for the original data set with the
scores perturbed infinitesimally at random are

Cℓ =

∑ℓ
k=1

∑nk
j=1

(
R
(j)
k − r(Sk)

)
W

(j)
k∑n

k=1

∑nk
j=1W

(j)
k

(20)

for ℓ = 1, 2, . . . , n, where the responses R
(1)
k , R

(2)
k , . . . , R

(nk )
k

& weights paired with them are randomly permuted for each k .

3 So Bℓ = Cℓ for all ℓ = 1, 2, . . . , n, due to the previous slide.
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Ties in scores can be treated as weighted samples

The aggregated abscissae (horizontal coordinates) are

Aℓ =

∑ℓ
k=1Wk∑n
k=1Wk

=

∑ℓ
k=1

∑nk
j=1W

(j)
k∑n

k=1

∑nk
j=1W

(j)
k

(21)

for ℓ = 1, 2, . . . , n.
Thus, the horizontal coordinates in the cumulative graphs for the
original and new data sets are the same, as are the vertical coords.
(as shown on the previous slide), at least when the graph consists
of straight line segments connecting (Ak−1,Bk−1) = (Ak−1,Ck−1)
to (Ak ,Bk) = (Ak ,Ck) for k = 1, 2, . . . , n, with A0=B0=C0=0.
The original data set’s cumulative graph which interpolates linearly
from every perturbed score to the next greatest perturbed score
will be almost the same, aside from having slightly larger random
excursions between scores that were the same prior to perturbation.
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Advantages and disadvantages (skip if low on time)

randomized non-randomized

pros displays every single member
of the original data set

horizontal axis has no
randomization

cons horizontal axis is randomized
to some extent (the ordering
for repeated scores must be
randomized, obviously)

displays only averaged
responses for repeated
(degenerate) scores
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Interactive plots

Interactive plots
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Interactive traversal of the Hilbert curve

Census Bureau’s weighted sampling of counties in
California: the county is the subpopulation of the
full state pop.; responses are given by “Variable”.

(Click to play the movie.)
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Concluding thoughts

Concluding thoughts
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Ideal limit of the empirical Kuiper metric

Given 3 real-valued random variables, X , Y , Z , the Kuiper metric
is the following summary stat of differences between the regression
E[Y |X ] of Y on X and the regression E[Z |X ] of Z on X ; this stat
compares Y andZ while controlling for X (say X is age or income):

max
−∞≤a≤b≤∞

∣∣∣Ea≤X≤b

[
E[Y |X ]− E[Z |X ]

]∣∣∣, (22)

where Ea≤X≤b

[
E[Y |X ]− E[Z |X ]

]
= E

[(
E[Y |X ]− E[Z |X ]

)
· 1{a ≤ X ≤ b}

]
, (23)

1{a ≤ X ≤ b} = 1 when a ≤ X ≤ b, and (24)

1{a ≤ X ≤ b} = 0 when X < a or X > b. (25)

Calibration is the special case with Z = X (making E[Z |X ] = X ).
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Matched-pair analysis

The simplest, most common paired samples consist of observations
from two subpopulations, with each observed response from one
subpopulation corresponding to an observed response from the
other subpopulation at the same value(s) of the covariate(s). Such
a pair of observed responses (one from each subpopulation) at the
same value(s) of the covariate(s) is known as a “matched pair,”
with the matching based on the value(s) of the covariate(s).
Generalization of all of this tutorial’s cumulative methodologies to
the analysis of paired samples should be obvious; full details are in
the paper available at https://arxiv.org/abs/2305.11323
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Open-access articles and open-source software

Open-access references are available at the top of
http://tygert.com/research.html

Open-source software is available at the bottom of
http://tygert.com/software.html
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Randomized controlled trials and A/B tests

The cumulative approach is relevant for analyzing the treatment
effect in any randomized controlled trial. Conditioning on
covariates traditionally can lead to issues with Simpson’s Paradox,
due to the need to choose the sizes of the bins for binning
(“binning” is also known as “bucketing,” “segmenting,” or
“stratifying”). Cumulative stats avoid Simpson’s Paradox entirely.

A/B tests are a form of randomized controlled trial that is
especially popular in the data-driven industries.
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Observational studies

Observational studies can also benefit from cumulative statistics.
“Adjusting” for covariates is common in such studies. Adjustment
often involves conditioning on (controlling for) covariates.
Conditioning on confounding covariates facilitates causal or
counterfactual analysis.
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Conclusion

1 Kolmogorov, Kuiper, Smirnov, and Wiener had good reason
to introduce cumulative statistics, and Hilbert and Peano had
good reason to introduce their space-filling curves.

2 Classical non-cumulative statistics have an explicit trade-off
between statistical confidence and resolving power (resolution
of variations as a function of score). The classical metrics and
reliability diagrams are typically misleading (or manipulated)
due to the strong dependence on the arbitrary choice of bins.

3 Meta’s Fairness Flow promotes the cumulative metrics as the
preferred method for detecting differences while controlling for
variates, thanks to the hard work of the Responsible AI team.

4 There is plenty more to come in this space — stay tuned!
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