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Chapter 1

Introduction

This document provides largely self-contained lecture notes for the first half of an ap-
plied math course, introducing the numerical treatment of differential equations such as the
Laplace, Helmholtz, wave, and Maxwell equations via fast multipole methods and related
techniques of matrix compression. In particular, the notes discuss a method that the IEEE’s
and American Institute of Physics’ Computing in Science and Engineering journal deemed
to be one of the top ten algorithms of the twentieth century (see Dongarra and Sullivan [15]).
The minimal prerequisites are linear algebra, Calculus, complex-analytic contour-integration,
and some familiarity with convolution, the Fourier transform, and sampling. Naturally, some
familiarity with the material cited in the recommended reference list (see Chapter 9) could
enable deeper understanding of the content of these lecture notes. See Nishimura [48] for
the history of the development of these methods within the computational community, and
Daubechies [14] for (among many other topics) the history of the more-purely mathematical
strains of these methods (Littlewood-Paley, Calderón-Zygmund, and microlocal analysis).

1.1 Rationale for modeling

These notes describe a class of algorithms for modeling systems governed by the fundamental
equations of physical fields (the Maxwell equations, equations of fluid dynamics, Schrödinger
and Dirac equations, equations of elasticity theory, etc.), with particular emphasis on the
Helmholtz equation and its various special cases (the Laplace and Poisson equations, the
Yukawa/screened-Coulomb equation, etc.). The algorithms have many other important ap-
plications, to topics ranging from computing contour integrals to computing singular value
decompositions to analyzing and synthesizing linear combinations of special functions.

The benefits of modeling physical phenomena computationally are manifold. Computer-
assisted modeling can reduce or even eliminate the need for prototyping when engineering
new products, and enables quantitative exploration of physical theories. The value of the
methods described in the present notes is well known in a wide variety of scientific and
engineering disciplines; in electrical engineering alone the methods are used to design circuits
free of undesired crosstalk, antennas with desired reception and broadcast patterns, stealthy
aircraft nearly invisible to radar, etc. (see, for example, Cheng et al. [8], Chew et al. [11], and
http://www.integrandsoftware.com). Also, new applications are appearing constantly.
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1.2 Outline of the notes

We take the following approach to solving linear partial differential equations of interest:

1. Convert the linear partial differential equation (PDE) to a mathematically equivalent
linear Fredholm integral equation of the second kind (see Chapter 2).

2. Discretize the integral equation via the Nyström method (see Chapter 3).

3. Use an iterative solver (GMRES) based on Krylov subspaces (see Chapter 4) to solve
the discretized integral equation, performing the required applications to vectors of the
matrix associated with the discretized integral equation via the following means:

4. Accelerate the application of the relevant matrix to vectors via a fast multipole method
(FMM) (see Chapter 8), observing that blocks of the matrix that are well-separated
from the diagonal can be approximated to high precision via low-rank matrices, as
follows:

5. Construct the low-rank approximations via the interpolative decomposition (ID) (see
Chapter 7), using randomized algorithms to check the accuracy of the approximations
(see Chapter 5), while using the singular value decomposition (SVD) as a theoretical
tool (see Chapter 6).

This paradigm is very effective for solving the Laplace and Poisson equations, for solving
the Helmholtz and time-harmonic Maxwell equations for objects that are at most a few
wavelengths in size, as well as for solving many other equations arising in the sciences and
engineering, including linearized Navier-Stokes equations. Variations on this paradigm can
handle the Maxwell equations (both time-harmonic and time-dependent) for arbitrarily large
objects (see Cheng et al. [8] and Chew et al. [11]). For an overview, see Nishimura [48].

Remark 1 The above five-point list does not reference the remaining chapters in the logical
order; however, the presentation in the present notes does follow the logical order — later
chapters presume that the reader is already familiar with material from earlier chapters, but
not vice versa. The reader may wish to review periodically the brief list above while studying
the remaining chapters.

1.3 Rationale for using integral equations

Three basic criteria determine the usefulness of a numerical method: computational cost
(both running-time and memory usage), robustness (guaranteeing accurate, trustworthy,
meaningful results regardless of the particular structure of the input data), and ease-of-use
(particularly when applied in the complicated circumstances often encountered in physical
reality and engineering practice). Substantial improvements in any one of the three criteria
can enable science fictions to become matter-of-fact technologies. Furthermore, ease-of-use
impacts the amount of human time entailed in using an algorithm. Converting differential
equations to integral equations (as in point 1 of the above five-point list) and then applying
the other methods described in the present notes yields cost-effective, robust, easy-to-use
algorithms:
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1.3.1 Computational cost

When modeling homogeneous media, integral-equation formulations can focus on functions
whose domains are restricted to the boundaries of the media. Therefore, when we use
integral-equation formulations, we often need only track functions on the boundaries of the
media, rather than throughout the volume of the media. This reduced dimensionality can
allow integral-equation formulations to cost far less than the equivalent differential-equation
formulations.

When modeling scattering from inhomogeneous media, integral-equation formulations
can focus on functions whose domains are restricted to where the scattering potential is
nonzero. In contrast, differential-equation formulations often require tracking functions
throughout a volume large enough to enclose either a perfectly matched layer or a huge rect-
angular or spherical container with nonreflecting walls (see, for example, Chew et al. [11]).

The algorithms described in the present notes have costs that are directly proportional
to the minimal amount of input data necessary for determining the output data.

1.3.2 Robustness

The condition number of a numerical method governs the accuracy attained by the method
(see, for example, Dahlquist and Björck [13] for a discussion of numerical conditioning). Any
algorithm based on a direct (not preconditioned) discretization of a differential equation
must have a high condition-number, sometimes prohibitively high. In contrast, algorithms
based on proper integral-equation formulations often have low condition-numbers and hence
produce more accurate solutions.

Furthermore, integral-equation formulations can transparently incorporate all boundary
conditions exactly. In contrast, differential-equation formulations often require some sort of
approximate scheme for handling boundary conditions. For example, differential-equation
formulations of scattering problems require the use of either what is known as a perfectly
matched layer, or a rectangular or spherical container with approximately nonreflecting walls
(see, for example, Chew et al. [11]).

1.3.3 Ease-of-use

Integral-equation formulations often handle domains with complicated geometries — such as
arbitrary computational meshes from computer-aided design (CAD) packages — completely
transparently, whereas differential-equation formulations may require herculean efforts. It is
generally much easier to attain reliable accuracy using integral-equation formulations.
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Chapter 2

Integral equations

In this chapter, we reformulate various differential equations as integral equations, to facil-
itate their solution by means of the methods described later. Many — perhaps even most
— of the partial differential equations encountered in physics and in mathematics reduce to
equations of the type considered here, namely the Helmholtz equation and its variants.

2.1 Volume integral equation formulation

of the Helmholtz equation

Given a complex number k, a positive integer d, and a function V on Rd, we would like to
solve the following pair of equations for ψscat:

(∇2 + k2 1)ψtot = V ψtot (2.1)

and
ψtot = ψin + ψscat, (2.2)

where ψtot, ψin, and ψscat are functions on Rd, ∇2 is the Laplacian (the sum of the second-
order partial derivatives with respect to the Cartesian coordinate axes), and 1 is the identity
operator. In (2.1) and (2.2), we assume that ψin satisfies an analogue of (2.1) in which V is
identically zero, namely,

(∇2 + k2 1)ψin = 0. (2.3)

Formula (2.1) is known as the Helmholtz equation (or time-harmonic wave equation) in the
presence of the potential V ; ψscat is known as the scattered field, and ψin is known as the
incident or incoming field (which satisfies an analogue (2.3) of (2.1) with a potential that is
zero everywhere).

Inserting (2.2) into (2.1), and then using (2.3), we obtain that

(∇2 + k2 1)ψscat = V ψin + V ψscat. (2.4)

Applying the operator (∇2 + k2 1)−1 to both sides of (2.4), we obtain the Lippmann-
Schwinger (or Rayleigh) integral equation

ψscat = (∇2 + k2 1)−1 V ψin + (∇2 + k2 1)−1 V ψscat, (2.5)
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which represents ψscat in terms of a distorted version of itself, plus a distorted version of ψin.
In the following section, we will express (∇2 + k2 1)−1 explicitly as an integral operator.

2.2 Green functions

In accordance with the general definition of a Green function, for any integer d > 1 and
complex number k whose imaginary part is nonnegative, the Green function Gk for ∇2+k2 1
on Rd is the function on Rd ×Rd such that

(∇2 + k2 1)Gk(x,y) = δ(x− y) (2.6)

for all x and y in Rd, where δ is the Dirac delta, the differential operator ∇2 + k2 1 acts
with respect to x, and Gk(x,y) satisfies what is known as the outgoing Sommerfeld radiation
condition as a function of x,

lim
r→∞

r(d−1)/2
(
∂

∂r
Gk(x,y)− ik Gk(x,y)

)
= 0 (2.7)

for any y ∈ Rd and uniformly in all directions (of x) as r →∞, where r = |x| and i =
√
−1.

The Sommerfeld condition ensures that the Green function is unique. For the rationale
behind using the term “outgoing,” look ahead to Remark 4 in Section 2.3.

In R2,

Gk(x,y) =

{ 1
2π

ln |x− y|, k = 0

− i
4
H

(1)
0 (k|x− y|), k 6= 0

(2.8)

for any x and y in R2 with x 6= y, where H
(1)
0 is the Hankel function of the first kind of

order 0.
In R3,

Gk(x,y) =

{
− 1

4π|x−y| , k = 0

− exp(ik|x−y|)
4π|x−y| , k 6= 0

(2.9)

for any x and y in R3 with x 6= y.
It is easy to verify (2.9). The expression for Gk(x,y) clearly has the correct dimensional

analysis (that is, the units of Gk(x,y) are the inverse of the length scale, as required in (2.6)).
That ∇2+k2 1 annihilates Gk(x,y) when x 6= y is clear from the expression for the Laplacian
(acting on functions of x) in spherical coordinates whose origin is at y:

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 (sin θ)2
∂2

∂ϕ2
+

1

r2
∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
, (2.10)

where r and ϕ denote the radial and azimuthal coordinates, respectively, and θ denotes the
polar (zenith) angle (r = |x − y| ≥ 0, 0 ≤ ϕ ≤ 2π, and 0 ≤ θ ≤ π). Similarly, it is easy
to verify (2.8), using the differential equation that defines Hankel functions, in conjunction
with the expression for the Laplacian (acting on functions of x) in polar coordinates whose
origin is at y.
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For any integer d > 1, and complex number k whose imaginary part is nonnegative,
applying ∇2 + k2 1 to the expressions on both sides of the following identity and using (2.6)
verifies that

(∇2 + k2 1)−1f(x) =

∫
Rd

Gk(x,y) f(y) dy (2.11)

for any x ∈ Rd, and any (sufficiently regular) complex-valued function f on Rd.

2.3 How the Helmholtz equation arises

from the time-dependent wave equation

Given a positive integer d, a positive real number c, and a function s on Rd such that
0 < s(x) ≤ c for any x ∈ Rd, we would like to solve the following equation for the function
ψ = ψ(x, t) on Rd ×R:

∂2

∂t2
ψ = s2∇2ψ. (2.12)

Formula (2.12) is known as the time-dependent (scalar) wave equation; the number c is
known as the speed of wave propagation in the ambient space, and the function s is known
as the local speed of wave propagation.

To solve (2.12), we choose an appropriate nonzero complex number k whose imaginary
part is nonnegative, and consider the time-harmonic/Fourier-Laplace-transform ansatz

ψ(x, t) = ψk(x) e−ikct (2.13)

for any x ∈ Rd, and t ∈ R, where ψk is a function on Rd.
Inserting (2.13) into (2.12), we obtain the Helmholtz equation

(∇2 + k2 1)ψk = Vk ψk, (2.14)

where Vk is the function defined on Rd via the formula

Vk(x) = k2

(
1−

(
c

s(x)

)2
)
. (2.15)

Remark 2 Combining (2.15) and the fact that s(x) ≤ c for any x ∈ Rd yields that Vk(x) ≤ 0
for any x ∈ Rd when k is real, guaranteeing that (2.14) does not have any resonances (i.e.,
bound-states) when k is real and Vk is integrable.

Remark 3 Typically s(x) = c in “free space,” that is, outside of objects that scatter the
wave field. Therefore, Vk(x) defined in (2.15) vanishes outside of objects that scatter the
wave field.

Remark 4 If k is real and nonzero, then the time dependence in the ansatz (2.13) must be
e−ikct rather than eikct in order to use the corresponding Green functions from Section 2.2.
With the time dependence e−ikct, using in (2.11) the Green functions from Section 2.2 en-
sures that ψscat from (2.5) is an outgoing field, satisfying the outgoing Sommerfeld radiation
condition. If k has a strictly positive imaginary part, then e−ikct blows up as t increases,
which is appropriate for the study of Anderson localization.
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2.4 Boundary integral equations associated

with the Laplace equation

2.4.1 The Dirichlet problem inside a closed curve in R2

The problem is as follows. Given a (sufficiently regular) real-valued function g on the bound-
ary ∂D of an open (and sufficiently regular) simply-connected bounded domain D in C, find
a real-valued function f that is continuous on the closure of D, is harmonic (i.e., satisfies
the Laplace equation ∇2f = 0) on D, and matches g on ∂D (i.e., satisfies f |∂D = g). Please
note that (for notational convenience) D is open.

One way to derive an integral equation for the solution is as follows (see Mikhlin [44]
for similar derivations). See Kellogg [31], Riesz and Sz.-Nagy [50], or (for more general and
involved treatments) the works of Vladimir Maz’ya for existence and uniqueness proofs for
the solution.

We define ϕ to be the holomorphic function on D whose real part is f . We will derive
an integral equation on ∂D for a real-valued function ρ : ∂D → R such that

ϕ(w) =
1

2πi

∫
∂D

ρ(z̃)

z̃ − w
dz̃ (2.16)

for any w ∈ D.
By the Sokhotski-Plemelj formula (2.32) derived later, we obtain

lim
w→z, w∈D

ϕ(w) =
1

2
ρ(z) +

1

2πi
PV

∫
∂D

ρ(z̃)

z̃ − z
dz̃ (2.17)

for any z ∈ ∂D (“PV” denotes the principal value; see, for example, Mikhlin [44] or the
proof of Lemma 9).

Taking the real parts of both sides of (2.17), we obtain

g(z) =
1

2
ρ(z) +

1

2π
PV

∫
∂D

ρ(z̃) Im

(
dz̃

z̃ − z

)
(2.18)

for any z ∈ ∂D.
For any fixed z ∈ ∂D, we express z̃ − z in polar coordinates as

z̃ − z = r(z̃) eiθ(z̃), (2.19)

where θ(z̃) is real and r(z̃) is both real and nonnegative, in order to obtain that

Im

(
dz̃

z̃ − z

)
= Im d ln(z̃ − z) = d Im ln(z̃ − z) = dθ(z̃) =

∂[θ(z̃(l))]

∂l

∣∣∣∣
l=l(z̃)

dl(z̃), (2.20)

where l(z̃) is the length of the arc along ∂D going counter-clockwise to z̃, starting from some
arbitrary fixed reference point in ∂D, say z, and z̃(l) is an inverse of l(z̃), i.e., z̃(l(ζ)) = ζ
and l(z̃(λ)) = λ.
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Due to the definition of l(z̃) just given, ∂l(z̃) is a unit tangent to ∂D at z̃ and is therefore
orthogonal to the outward unit normal to ∂D at z̃, which we denote by ∂ν(z̃). Therefore,
by the Cauchy-Riemann equations for ψ(z̃) = ln(z̃ − z) = ln r + iθ, we have that

∂[θ(z̃(l))]

∂l

∣∣∣∣
l=l(z̃)

=
∂

∂ν(z̃)
ln r, (2.21)

where ∂
∂ν(z̃)

ln r is the derivative of ln r with respect to z̃ in the direction of the outward unit
normal to ∂D at z̃.

Combining (2.18), (2.19), (2.20), and (2.21), we obtain the boundary integral equation

g(z) =
1

2
ρ(z) +

1

2π
PV

∫
∂D

(
∂

∂ν(z̃)
ln |z̃ − z|

)
ρ(z̃) dl(z̃) (2.22)

for any z ∈ ∂D, where ∂
∂ν(z̃)

ln |z̃ − z| is the derivative with respect to z̃ of ln |z̃ − z| in the

direction of the outward unit normal to ∂D at z̃, and l(z̃) is the length of the arc along ∂D
going counter-clockwise to z̃, starting from some arbitrary fixed reference point in ∂D, say
z.

Similarly, combining (2.16) and the fact that f is the real part of ϕ yields that

f(w) =
1

2π

∫
∂D

(
∂

∂ν(z̃)
ln |z̃ − w|

)
ρ(z̃) dl(z̃) (2.23)

for any w ∈ D, where again ∂
∂ν(z̃)

ln |z̃−w| is the derivative with respect to z̃ of ln |z̃−w| in
the direction of the outward unit normal to ∂D at z̃, and l(z̃) is the length of the arc along
∂D going counter-clockwise to z̃, starting from some arbitrary fixed reference point in ∂D.

Thus, we can solve (2.22) for ρ on ∂D, and use the result in (2.23) to calculate f on D.

Remark 5 In fact, the integrand in (2.22) is integrable, so the integral exists in the usual
sense, not just the principal-value sense. (See, for example, Mikhlin [44] or Colton and
Kress [12].)

Remark 6 The function ln |z̃− z|, where z̃ ∈ ∂D, is known as the single-layer potential for
the Laplace equation in R2. The function ∂

∂ν(z̃)
ln |z̃− z| appearing in (2.22) is known as the

double-layer potential for the Laplace equation in R2. In accordance with the definition of
a derivative, the double-layer potential may be regarded as the difference of two infinitely
close single-layer potentials.

Remark 7 Direct generalizations to the Maxwell equations of this method for deriving
boundary integral equations would seem to require (augmented) Clifford analysis, differential
forms, and whatnot (see, for example, McIntosh and Mitrea [41]). The resulting integral
equations for space filled with individually homogeneous dielectrics are known as the Müller
(or Müller-Weyl) equations, and are derived in Müller [46] using only the usual calculations
with vectors (Gaussian “pillboxes,” Stokes curl and divergence theorems, and so on). Perfect
conductors require special methods when uniqueness of solutions to the integral equations
matters — see Epstein and Greengard [19]; these special methods are also critical for the
time-harmonic Maxwell equations at very low frequencies, for any media (dielectric, perfectly
conducting, etc.).
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Remark 8 The solutions to Neumann problems (which are the same as Dirichlet problems,
except that you are given the values of the normal derivative of f along ∂D instead of
the values of f itself) follow from the solutions to Dirichlet problems via integration by
parts, altering the associated boundary integral equations to their adjoints. The solutions to
problems involving multiply-connected domains usually appeal to simple variations on the
counting principle familiar from complex analysis, topology, and geometrical index theories.

2.4.2 Jump conditions for holomorphic functions

One way to derive the jump conditions used in Subsection 2.4.1 is as follows (see Kilian [32]
for similar derivations). We will need the results of a few simple calculations, as stated in
the following lemma.

Lemma 9 Suppose that D is a simply-connected bounded domain in C such that its boundary
∂D is the image of a circle under a differentiable function, and D itself is open.

Then,
1

2πi
lim

w→z, w∈D

∫
∂D

1

z̃ − w
dz̃ = 1 (2.24)

and
1

2πi
PV

∫
∂D

1

z̃ − z
dz̃ =

1

2
(2.25)

for any z ∈ ∂D, where “PV” denotes the “principal value” (for a definition of “principal
value,” see, for example, Mikhlin [44] or the proof of this lemma).

Proof. The Cauchy reproducing formula for the constant function taking the value 1 every-
where yields (2.24) immediately.

By the definition of the principal value of an integral, the left hand side of (2.25) is the
limit as r tends to 0 of the quantity

1

2πi

∫
1

z̃ − z
dz̃, (2.26)

with the integral taken along the part of ∂D that does not intersect a disc of radius r about
z (i.e., along the arc connecting a to b to c in Figure 2.1). Since 1

z̃−z is holomorphic with
respect to z̃ except at z̃ = z, the Cauchy theorem yields that (2.26) with the integral taken
along the part of ∂D that does not intersect a disc of radius r about z (i.e., along the arc
connecting a to b to c in Figure 2.1) has the same value as (2.26) with the integral taken
along the part of a circle of radius r about z that intersects D (i.e., along the arc connecting
a to d to c in Figure 2.1).

Expressed in polar coordinates centered about z, with

z̃ − z = r eiθ, (2.27)

(2.26) with the integral taken along the part of a circle of radius r about z that intersects
D (i.e., along the arc connecting a to d to c in Figure 2.1) is clearly equal to the quantity

1

2πi

∫ θc

θa

i dθ, (2.28)
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Figure 2.1: The arc connecting a to b to c to z and back to a is ∂D. The arc connecting a
to d to c is part of a circle centered about z. The arc connecting a to b to c is the contour of
integration in the definition of the principal value of the integral, when the arc connecting
c to z to a is omitted from the contour of integration (which would otherwise include all of
∂D). The shaded region is the intersection of D and a disc centered about z.

where
a− z = r eiθa , (2.29)

c− z = r eiθc , (2.30)

and a and c are the points in the intersection of ∂D and the circle of radius r centered about
z (see Figure 2.1). Obviously, we have that

lim
r→0

1

2πi

∫ θc

θa

i dθ =
1

2
, (2.31)

since the part of ∂D that intersects a disc of radius r about z (i.e., the arc connecting a to
z to c in Figure 2.1) straightens out as r tends to 0.

Combining the preceding two paragraphs of this proof yields (2.25). 2

The following theorem, usually attributed to Sokhotski or Plemelj, provides the limiting
value of the Cauchy integral ϕ(w) of a function ρ, where ρ is defined on the boundary of a
domain D in C, as w tends to a fixed point z on ∂D through the interior of D. It is easy to
relax the requirement stated in the theorem that ρ be continuously differentiable.

Theorem 10 Suppose that D is a simply-connected bounded domain in C such that its
boundary ∂D is the image of a circle under a differentiable function, and D itself is open.
Suppose in addition that ρ : ∂D → R is continuously differentiable.

Then,

lim
w→z, w∈D

ϕ(w)− 1

2πi
PV

∫
∂D

ρ(z̃)

z̃ − z
dz̃ =

1

2
ρ(z) (2.32)

for any z ∈ ∂D, where “PV” denotes the “principal value” (see, for example, Mikhlin [44]
or the proof of Lemma 9), and ϕ : D → C is the function defined via the formula

ϕ(w) =
1

2πi

∫
∂D

ρ(z̃)

z̃ − w
dz̃ (2.33)

for any w ∈ D.
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Proof. By adding and subtracting the same quantity to and from the right-hand side
of (2.33), we obtain that

ϕ(w) =
1

2πi

∫
∂D

ρ(z̃)− ρ(z)

z̃ − w
dz̃ + ρ(z)

1

2πi

∫
∂D

1

z̃ − w
dz̃ (2.34)

for any w ∈ D and z ∈ ∂D. Since ρ is continuously differentiable, the quantity

ρ(z̃)− ρ(z)

z̃ − z
(2.35)

is bounded for any z̃ and z in ∂D, hence is integrable, and so

PV

∫
∂D

ρ(z̃)− ρ(z)

z̃ − z
dz̃ =

∫
∂D

ρ(z̃)− ρ(z)

z̃ − z
dz̃ (2.36)

for any z ∈ ∂D. Taking the limits of both sides of (2.34) as w tends to z, and noting
that (2.35) is integrable, we get that

lim
w→z, w∈D

ϕ(w) =
1

2πi

∫
∂D

ρ(z̃)− ρ(z)

z̃ − z
dz̃ + ρ(z)

1

2πi
lim

w→z, w∈D

∫
∂D

1

z̃ − w
dz̃ (2.37)

for any z ∈ ∂D.
Similarly, by adding and subtracting the same quantity to and from the right-hand side

of (2.33), and taking the principal-value limits of both sides, we obtain that

1

2πi
PV

∫
∂D

ρ(z̃)

z̃ − z
dz̃ =

1

2πi
PV

∫
∂D

ρ(z̃)− ρ(z)

z̃ − z
dz̃ + ρ(z)

1

2πi
PV

∫
∂D

1

z̃ − z
dz̃ (2.38)

for any z ∈ ∂D.
Subtracting (2.38) from (2.37) and then applying (2.36), (2.24), and (2.25), we ob-

tain (2.32). 2
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Chapter 3

Discretization of integral equations

In this chapter, we discretize an integral equation, via the Nyström method. To start, we
discuss discretization in general, not necessarily using the Nyström method:

3.1 Overview

Physical systems are usually modeled in terms of continuous variables, whereas the digital
computers which perform our calculations deal only with discrete data. Therefore, in order
to use computers to model physical systems, we must somehow ensure that our numerical
calculations yield good approximations to the desired values of continuous variables. The
means for achieving this is known as discretization. We will discuss discretization only very
briefly in the present notes, referring the reader to standard presentations of the Nyström,
Galerkin, collocation, and qualocation methods (see, for example, Atkinson [3]).

We caution that methods for discretization remain under intensive development. There
are many subtleties involved in discretization, as demonstrated for instance by spurious-
resonance/fictitious-eigenfrequency problems (see Epstein and Greengard [19]). The bound-
aries of domain geometries encountered in practice often have corners, edges, and rough
surfaces, complicating their discretization. Beware! The most commonly used procedures
for discretization in electromagnetics, the curl- or divergence-conforming (flux-conservative)
Rao-Wilton-Glisson “rooftop” Galerkin schemes, are only first-order accurate. Bremer [5],
Bremer et al. [6], Helsing [27], Kloeckner et al. [33], Yarvin and Rokhlin [57], and others
treat many issues involved with obtaining high-order discretization schemes.

3.2 The Dirichlet problem for the Laplace equation in-

side a closed curve in R2

In this section, we summarize the integral-equation formulation of the Dirichlet problem for
the Laplace equation inside a closed curve in R2, derived in the previous chapter. We then
discretize this formulation, in the last section of the present chapter. We will be identifying
points in R2 with numbers in the complex plane C, in the standard fashion.
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The problem is as follows. Given a (sufficiently regular) real-valued function g on the
boundary ∂D of an open (and sufficiently regular) simply-connected bounded domain D in
C, find a real-valued function f that is continuous on the closure of D, is harmonic (i.e.,
satisfies the Laplace equation ∇2f = 0) on D, and matches g on ∂D (i.e., satisfies f |∂D = g).

As described earlier (in Subsection 2.4.1), we obtain f via the formula

f(w) =
1

2π

∫
∂D

h(w, z̃) ρ(z̃) dl(z̃) (3.1)

for any w ∈ D, where

h(w, z̃) =
∂

∂ν(z̃)
ln |z̃ − w|, (3.2)

∂
∂ν(z̃)

ln |z̃−w| is the derivative with respect to z̃ of ln |z̃−w| in the direction of the outward

unit normal to ∂D at z̃, and l(z̃) is the length of the arc along ∂D going counter-clockwise
to z̃, starting from some arbitrary fixed reference point in ∂D. We obtain the real-valued ρ
in (3.1) by solving

1

2
ρ(z) +

1

2π

∫
∂D

h(z, z̃) ρ(z̃) dl(z̃) = g(z) (3.3)

for any z ∈ ∂D, where again h(z, z̃) is defined as in (3.2), and l(z̃) is the length of the arc
along ∂D going counter-clockwise to z̃, starting from some arbitrary fixed reference point in
∂D, say z.

Remark 11 If ∂D is sufficiently regular, then h(z, z̃) defined as in (3.2) is smooth as a
function of z̃ ∈ ∂D, even when z ∈ ∂D. Similarly, if ∂D and g are sufficiently regular, then
the solution ρ to (3.3) is smooth. (See, for example, Colton and Kress [12].)

3.3 Nyström methods

Trapezoidal quadrature of order n involves n points z1, z2, . . . , zn−1, zn from ∂D that are
equispaced in terms of arc length along ∂D, and provides a highly accurate approximation∫

∂D

ϕ(z̃) dl(z̃) ≈ L

n

n∑
k=1

ϕ(zk) (3.4)

for any function ϕ that is smooth on the sufficiently regular ∂D, where L is the length of
∂D, and l(z̃) is the length of the arc along ∂D going counter-clockwise to z̃, starting from
some arbitrary fixed reference point in ∂D; for precise characterizations of the accuracy of
the approximation in (3.4), see, for example, Atkinson [3]. Recalling Remark 11, we may
replace the integral in (3.3) with its approximation via trapezoidal quadrature to obtain

1

2
ρ(z) +

L

2πn

n∑
k=1

h(z, zk) ρ(zk) ≈ g(z) (3.5)
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for any z ∈ ∂D, where h is defined as in (3.2), and L is the length of ∂D. In particular, we
can enforce (3.5) for z = z1, z2, . . . , zn−1, zn, obtaining ρ(z1), ρ(z2), . . . , ρ(zn−1), ρ(zn) as
the solution to the system of linear equations

1

2
ρ(zj) +

L

2πn

n∑
k=1

h(zj, zk) ρ(zk) = g(zj) (3.6)

for j = 1, 2, . . . , n − 1, n, where again h is defined as in (3.2), and L is the length of ∂D.
Similarly, replacing the integral in (3.1) with its approximation via trapezoidal quadrature,
we obtain

f(w) ≈ L

2πn

n∑
k=1

h(w, zk) ρ(zk) (3.7)

for any w ∈ D, where again h is defined in (3.2), L is the length of ∂D, and ρ(z1), ρ(z2),
. . . , ρ(zn−1), ρ(zn) are solutions to (3.6).

Remark 12 If the kernel in an integral equation is singular, then the trapezoidal rule re-
quires corrections in order to provide a high-order quadrature; see Duan and Rokhlin [16]
and Kapur and Rokhlin [29]. Discretizing an integral equation whose kernel is singular is
entirely similar to the procedure outlined in the present section, aside from the need for
corrections to the trapezoidal quadrature.

Remark 13 The simple scheme for discretization described in the present section is known
as the Nyström method. Other possibilities for discretization include the Galerkin and
collocation methods. The Galerkin method often involves finite or boundary elements.
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Chapter 4

Iterative methods for solving systems
of linear-algebraic equations

In this chapter, we describe iterative methods for solving systems of linear equations, such
as (3.6). Iterative methods are efficient when the matrix associated with the system of
linear-algebraic equations is well-conditioned and can be applied rapidly to arbitrary vec-
tors; Chapter 8 describes methods for such rapid applications (specifically, for the matrices
associated with (3.6) and similar equations).

4.1 Simplest/stationary

The simplest iterative methods for solving systems of linear equations are Neumann/Born
series and Chebyshev approximations.

If the norm of the difference of a linear operator A from the identity operator 1, i.e.,

‖1−A‖ = max
x 6=0

‖(1−A) x‖
‖x‖

, (4.1)

is strictly less than 1, then the problem

A x = b, (4.2)

where b is an element in the range of A, has the solution

x = b + T b + T(T b) + T(T(T b)) + . . . , (4.3)

where T = 1 − A (after all, 1 + T + T2 + T3 + . . . is a geometric series whose sum is
(1−T)−1 = A−1; the series converges since ‖T‖ < 1). The right-hand side of (4.3) is known
as the Neumann/Born series.

When applying A is fairly expensive (which is normally so), we can obtain a sensible
approximation to the solution x by calculating the truncation of the Neumann/Born series
to (say) n terms, a calculation which entails just n−1 applications of A. However, truncating
the Neumann/Born series is not nearly as efficient as using the optimized Krylov subspace
methods that Section 4.2 discusses. Methods known as Chebyshev acceleration improve
upon simply truncating the Neumann/Born series, but such techniques generally are not
competitive with those discussed in the following section.
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4.2 Krylov-subspace-based/non-stationary

Suppose that we want to solve the system of linear-algebraic equations (4.2) for x, as accu-
rately as possible, by first applying A a total of n times to vectors of our choosing, and then
forming linear combinations of the resulting vectors; this is about the best we can do when
we expect the costs of applying A to dominate, and cannot afford to do anything with A
except apply it n times to vectors. Since the only known vector associated with (4.2) is b,
we thus need to find an algorithm that computes the vector x = p(A) b which minimizes
‖b−A x‖ over every polynomial p of degree at most n− 1.

For n = 0, 1, 2, . . . , the (n + 1)st Krylov subspace for A and b is the range of p(A) b
over every polynomial p of degree at most n. We now minimize over these Krylov subspaces.

Given any positive integer n such that the vectors A0 b, A1 b, . . . , An−1 b, An b are
linearly independent, we apply the Gram-Schmidt process in order to obtain orthonormal
vectors u1, u2, . . . , un, un+1 forming a basis for the (n+ 1)st Krylov subspace, defining first

u1 =
b

‖b‖
, (4.4)

and then uk+1 and Hl,k for each k = 1, 2, . . . , n− 1, n, via the following formulae:

Hl,k = 〈ul,A uk〉 (4.5)

for l = 1, 2, . . . , k − 1, k,

wk = A uk −
k∑
l=1

ul 〈ul,A uk〉 = A uk −
k∑
l=1

ulHl,k, (4.6)

Hk+1,k = ‖wk‖, (4.7)

uk+1 =
wk

‖wk‖
=

wk

Hk+1,k

, (4.8)

and
Hl,k = 0 (4.9)

for l = k + 2, k + 3, . . . , n, n + 1, where ‖α‖ denotes the norm of α, and 〈β,γ〉 denotes
the inner product of β and γ associated with the norm such that 〈cβ,γ〉 = c 〈β,γ〉 for any
vectors α, β, and γ, and complex number c. (We require ‖α‖2 = 〈α,α〉 for any vector α.)

Combining (4.6), (4.7), and (4.8) yields that

A uk = uk+1Hk+1,k +
k∑
l=1

ulHl,k (4.10)

for k = 1, 2, . . . , n−1, n. Defining U to be the matrix with n+1 columns whose kth column
is uk for k = 1, 2, . . . , n, n + 1, and V to be the matrix with n columns whose kth column
is uk for k = 1, 2, . . . , n− 1, n, we obtain from (4.10) that

A V = U H, (4.11)
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where H is the (n+ 1)× n matrix whose entries are defined in (4.5), (4.7), and (4.9). (H is
upper Hessenberg, that is, (4.9) holds for H.)

Suppose now that x is a linear combination of A0 b, A1 b, . . . , An−2 b, An−1 b, i.e., that
there is an n× 1 column vector y such that

x = V y, (4.12)

so that (since u1, u2, . . . , un−1, un are orthonormal and are the columns of V) the kth entry
of y is yk = 〈uk, x〉 for k = 1, 2, . . . , n − 1, n. Then, combining (4.4), (4.11), and (4.12)
yields that

b−A x = U (e−H y), (4.13)

where e is the (n+ 1)× 1 column vector defined by the formula

e =



‖b‖
0
0
...
0
0


, (4.14)

and H is the (n+ 1)× n matrix whose entries are defined in (4.5), (4.7), and (4.9).
Combining (4.13) and the fact that the columns u1, u2, . . . , un, un+1 of U are obtained

from the Gram-Schmidt process as in (4.4)–(4.9) and are therefore orthonormal, we obtain
that

‖b−A x‖ = ‖e−H y‖, (4.15)

where again x = V y =
∑n

k=1 uk yk, e is the (n+ 1)× 1 column vector defined in (4.14), and
H is the (n+ 1)× n matrix whose entries are defined in (4.5), (4.7), and (4.9). (Needless to
say, ‖e−H y‖ is the Euclidean norm of e−H y.) Notice that the number of entries in the
vector e−H y in the right-hand side of (4.15) is only n+ 1, whereas the vector b−A x in
the left-hand side of (4.15) could be extremely long.

Thus, in order to compute the vector x = p(A) b which minimizes ‖b − A x‖ over all
polynomials p of degree at most n − 1, or, equivalently, over all linear combinations of the
vectors A0 b, A1 b, . . . , An−2 b, An−1 b, we can use what is known as the Generalized
Minimum RESidual (GMRES) algorithm:

(1) Conduct the Gram-Schmidt process described in (4.4)–(4.9) to obtain the vectors
u1, u2, . . . , un, un+1 and the (n+ 1)× n matrix H.

(2) Compute the n × 1 vector y which minimizes the Euclidean norm ‖e −H y‖, with e
as in (4.14). (For details, see, for example, Chapter 5 of Golub and Van Loan [22].)

(3) Calculate x = V y =
∑n

k=1 uk yk.

See Saad [53] for a similar, more comprehensive discussion of this GMRES and related
algorithms. In practice we usually adjust n adaptively, setting n = 1, then n = 2, then
n = 3, and so on, until the solution x becomes sufficiently accurate.
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Remark 14 GMRES is not exorbitantly costly. However, GMRES simplifies when A is
self-adjoint. If A is self-adjoint, then combining (4.5), (4.10), and the fact that u1, u2, . . . ,
un−1, un are orthonormal yields that Hl,k = 〈A ul,uk〉 = 0 for l = 1, 2, . . . , k − 1, k − 2.
What is known as the conjugate residual or MINimum RESidual (MINRES) algorithm takes
advantage of this observation. When A is strictly positive definite, and at the expense of
replacing the bona-fide least-squares solutions from the second and third steps of GMRES
with easier-to-calculate approximations, what is known as the conjugate gradient algorithm
simplifies the computational procedures used in the conjugate residual algorithm, and reduces
the (forward) error in the solution vector x it produces.

Remark 15 Obviously, when the vectors A1 b, A2 b, . . . , An−1 b, An b span the entire
range of A, the solution x that GMRES computes minimizes ‖A x̃ − b‖ over all possible
vectors x̃. Unfortunately, however, there is little theoretical understanding of the rate of
convergence for the GMRES iterations. Even so, GMRES often converges rapidly in practice
(see, for example, Rokhlin [51] or Bruno et al. [7]; Rokhlin [51] refers to GMRES as the
generalized conjugate residual algorithm — GCR or GCRA — which is a mathematically
equivalent formulation). Theoretical analyses of the conjugate gradient and residual schemes
described in Remark 14 are far better developed (see, for example, Tyrtyshnikov [55]), and
these latter schemes work very well when A is self-adjoint. (However, matrices associated
with discretizations of boundary integral equations are seldom self-adjoint.)

Remark 16 To avoid problems with roundoff errors, replace (4.5) and (4.6) with suitable
reorthogonalization procedures, such as the following:

Fl,k = 〈ul,A uk〉 (4.16)

for l = 1, 2, . . . , k − 1, k,

rk = A uk −
k∑
l=1

ul Fl,k, (4.17)

Gl,k = 〈ul, rk〉 (4.18)

for l = 1, 2, . . . , k − 1, k,

wk = rk −
k∑
l=1

ulGl,k, (4.19)

and
Hl,k = Fl,k +Gl,k (4.20)

for l = 1, 2, . . . , k − 1, k. In exact arithmetic, Gl,k = 0 for l = 1, 2, . . . , k − 1, k.

Remark 17 Sometimes a good guess is available for the solution x to the system of linear
equations (4.2). A simple modification of the GMRES procedure described above can take
advantage of the guess; see, for example, Saad [53].
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Chapter 5

Estimating the spectral norm of a
matrix

In this chapter, we describe a method for estimating the spectral norm of a matrix (recall
that the spectral norm ‖A‖ of a matrix A is ‖A‖ = maxx 6=0 ‖Ax‖/‖x‖, with the maximum
taken over all nonzero vectors, where ‖Ax‖ is the Euclidean norm of Ax, and ‖x‖ is the
Euclidean norm of x). This allows us to check the accuracy of implementations of the
algorithms of Chapters 6 and 7. Chapter 8 uses these algorithms extensively in order to
“compress” the linear operators used in GMRES of Chapter 4 to solve discretized integral
equations such as (3.6). Such compression involves building an approximation C to a matrix
B (B is frequently a block of another, larger matrix), such that C can be applied efficiently to
arbitrary vectors. The accuracy of the compressed approximation is good when the spectral
norm ‖A‖ of the difference A = B−C is small. To assess the quality of an approximation
C to B, we need to be able to estimate the spectral norm ‖A‖ of A = B −C. Most often
we would like ‖A‖/‖B‖ to be near the machine precision. In such cases, we need a way to
ascertain that ‖A‖/‖B‖ is really small (say, within a few digits of the machine precision), but
do not necessarily need to estimate ‖A‖/‖B‖ to high relative accuracy. For this, the simple
power method is effective; the more complicated Lanczos method described, for example, by
Kuczyński and Woźniakowski [35] and Golub and Van Loan [22] can also be suitable.

The following theorem states that the power method provides an efficient means of esti-
mating the spectral norm ‖A‖ of a matrix A. The estimate pj(A) produced by the power
method never exceeds ‖A‖ and is very rarely much less than ‖A‖. Computing the estimate
pj(A) requires only applications of A and A∗ to vectors. The theorem is a slight reformula-
tion of Theorem 4.1(a) of Kuczyński and Woźniakowski [35] (which provides a proof).

Theorem 18 Suppose that j, m, and n are positive integers, A is an m × n matrix, ω is
an n× 1 vector whose entries are i.i.d. centered Gaussian random variables, and

pj(A) =
‖(A∗A)j ω‖
‖A (A∗A)j−1ω‖

. (5.1)

Then,
pj(A) ≤ ‖A‖. (5.2)
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Furthermore,
pj(A) ≥ (1− ε) ‖A‖ (5.3)

with probability at least

1−min

(
0.824,

0.354√
ε (2j − 1)

)
√
n (1− ε)2j−1 (5.4)

for any positive real number ε < 1.

Remark 19 With ε = 0.5, (5.4) becomes at least

1−
√

n

2j − 1
4−j. (5.5)

With ε = 0.9, (5.4) becomes at least

1− 4

√
n

2j − 1
100−j. (5.6)

Remark 20 The bound (5.4) on the probability of success does not depend on the structure
of the spectrum of the matrix A whose spectral norm is being estimated. Gaps between
the singular values may improve the performance, but are not necessary to produce the
guarantees stated in Theorem 18.

Generally, we compute pj(A) defined in (5.1) by constructing the following sequence:

v(0) = ω, (5.7)

v(1) = A v(0)/‖v(0)‖, (5.8)

v(2) = A∗ v(1)/‖v(1)‖, (5.9)

v(3) = A v(2)/‖v(2)‖, (5.10)

v(4) = A∗ v(3)/‖v(3)‖, (5.11)
...

v(2j−3) = A v(2j−4)/‖v(2j−4)‖, (5.12)

v(2j−2) = A∗ v(2j−3)/‖v(2j−3)‖, (5.13)

v(2j−1) = A v(2j−2)/‖v(2j−2)‖, (5.14)

v(2j) = A∗ v(2j−1)/‖v(2j−1)‖, (5.15)

pj(A) = ‖v(2j)‖, (5.16)

where A is the m× n matrix whose spectral norm ‖A‖ is being estimated by pj(A), and ω
is an n× 1 vector whose entries are i.i.d. centered Gaussian random variables.
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Chapter 6

The singular value decomposition
(SVD)

In this chapter, we describe the low-rank approximation of matrices via the singular value
decomposition (SVD), following the presentation in Golub and Van Loan [22]. This provides
a theoretical basis for understanding the interpolative decomposition (ID) of Chapter 7,
which we use extensively in Chapter 8. For proof of the existence of the SVDs used below, as
well as descriptions of reasonably efficient algorithms for computing SVDs, see, for example,
Golub and Van Loan [22].

6.1 Notation

Suppose that m and n are positive integers, and A is an m× n matrix. We define

l = min(m,n). (6.1)

The full SVD of A consists of a unitary m × m matrix U(full), a unitary n × n matrix
V(full), and an m× n matrix Σ(full) whose only nonzero entries are nonnegative and appear
in nonincreasing order on the main diagonal, such that

Am×n = U
(full)
m×m ·Σ

(full)
m×n · (V

(full)
n×n )∗. (6.2)

The columns of U(full) are known as the left singular vectors of A; the columns of V(full) are
known as the right singular vectors of A. The entries on the main diagonal of Σ(full) are
known as the singular values of A.

The thin SVD of A consists of an m×l matrix U(thin) whose columns are orthonormal, an
n× l matrix V(thin) whose columns are orthonormal, and a diagonal l× l matrix Σ(thin) whose
only nonzero entries are nonnegative and appear in nonincreasing order on the diagonal, such
that

Am×n = U
(thin)
m×l ·Σ

(thin)
l×l · (V

(thin)
n×l )∗, (6.3)

where l is defined in (6.1). The thin SVD is also known as the “economy-size” or reduced
SVD.
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Denoting the rank of A by k, the compact SVD consists of an m × k matrix U(comp)

whose columns are orthonormal, an n × k matrix V(comp) whose columns are orthonormal,
and a diagonal k× k matrix Σ(comp) whose only nonzero entries are nonnegative and appear
in nonincreasing order on the diagonal, such that

Am×n = U
(comp)
m×k ·Σ

(comp)
k×k · (V(comp)

n×k )∗, (6.4)

where again k is the rank of A.

6.2 Low-rank approximation

The SVD provides a means for characterizing the best low-rank approximations to a matrix,
as well as for constructing such approximations. The following theorem states that the
spectral norm of the difference between a matrix A and its best rank-k approximation is
simply the (k + 1)st greatest singular value σk+1(A) of A.

Theorem 21 Suppose that k, m, and n are positive integers, with k < m and k < n, and
A is an m× n matrix.

Then,
min ‖A−B‖ = σk+1(A), (6.5)

where the minimum is taken over all m× n matrices B whose rank is at most k, σk+1(A) is
the (k+ 1)st greatest singular value of A (counting multiplicity), and ‖A−B‖ is the spectral
norm of A−B,

‖A−B‖ = max
x 6=0

‖(A−B) x‖
‖x‖

, (6.6)

with the maximum taken over all nonzero vectors of length n, and with ‖ ·‖ in the right-hand
side of (6.6) denoting the Euclidean norm (the spectral norm of a matrix is equal to the
greatest singular value of the matrix).

Proof. We start by forming the thin SVD (6.3) of A. We define u(1), u(2), . . . , u(l−1), u(l)

to be the columns of U(thin), we define v(1), v(2), . . . , v(l−1), v(l) to be the columns of V(thin),
and we define σ1, σ2, . . . , σl−1, σl to be the diagonal entries of Σ(thin), where l = min(m,n).

If we set B =
∑k

j=1 σj u(j) (v(j))∗, then combining (6.3) (that is, A =
∑l

j=1 σj u(j) (v(j))∗)

and the facts that u(k+1), u(k+2), . . . , u(l−1), u(l) are orthonormal, as are v(k+1), v(k+2), . . . ,
v(l−1), v(l), yields that ‖A − B‖ = σk+1. We now consider any arbitrary m × n matrix B
whose rank is at most k, and complete the proof by showing that ‖A−B‖ ≥ σk+1.

It follows from the fact that the rank of B is at most k that the dimension of the null
space of B is at least n − k. Therefore, there must exist a nonzero vector w that belongs
both to the null space of B and to the (k+1)-dimensional space spanned by the orthonormal
vectors v(1), v(2), . . . , v(k), v(k+1), for otherwise the second dimension n of B would be at
least (n− k) + (k + 1).

It follows from the definition of the spectral norm that

‖A−B‖ ≥ ‖(A−B) w‖
‖w‖

. (6.7)
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It follows from the fact that w belongs to the null space of B that

‖(A−B) w‖ = ‖Aw‖. (6.8)

It follows from the fact that w belongs to the space spanned by the orthonormal vectors
v(1), v(2), . . . , v(k), v(k+1) that

w =
k+1∑
j=1

wj v(j), (6.9)

where wj is the inner product of v(j) and w: wj = (v(j))∗w. Combining (6.3) (that is,

A =
∑l

j=1 σj u(j) (v(j))∗), (6.9), and the fact that v(1), v(2), . . . , v(l−1), v(l) are orthonormal
yields that

Aw =
k+1∑
j=1

wj σj u(j) (6.10)

The fact that u(1), u(2), . . . , u(k), u(k+1) are orthonormal yields that∥∥∥∥∥
k+1∑
j=1

wj σj u(j)

∥∥∥∥∥
2

=
k+1∑
j=1

|wj σj|2. (6.11)

It follows from the fact that σ1 ≥ σ2 ≥ · · · ≥ σk ≥ σk+1 ≥ 0 that

k+1∑
j=1

|wj σj|2 ≥ (σk+1)
2

k+1∑
j=1

|wj|2. (6.12)

Combining (6.9), the fact that wj is the inner product of v(j) and w, and the fact that
v(1), v(2), . . . , v(k), v(k+1) are orthonormal yields that

k+1∑
j=1

|wj|2 = ‖w‖2. (6.13)

Combining (6.7), (6.8), and (6.10)–(6.13) yields that

‖A−B‖ ≥ σk+1, (6.14)

completing the proof. 2

Remark 22 The first two paragraphs in the above proof of Theorem 21 explicitly construct
a matrix B such that the rank of B is at most k, and ‖A − B‖ = σk+1(A). This choice
for B also minimizes the Frobenius/Hilbert-Schmidt norm of A−B (the Frobenius/Hilbert-
Schmidt norm of A−B is the square root of the sum of the squares of the absolute values
of the entries of A−B).
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Chapter 7

The interpolative decomposition (ID)

In this chapter, we describe the interpolative decomposition (ID) for the low-rank approxi-
mation of matrices. While the singular value decomposition (SVD) described, for example,
in the previous chapter is useful theoretically and provides a basis for understanding the ID,
the ID has many practical advantages over the SVD for high-precision matrix compression.
We will use the ID extensively in Chapter 8.

Theorem 25 below is the main existential result, asserting that, for any set of n continuous
functions on a compact space S, there exist numerically stable n-point interpolation formulae.
(The reader who is not familiar with the notion of a compact space is welcome to assume
throughout this chapter that S contains only finitely many points, instead of just being
compact, and that any function on S is continuous.) Remarks 29 and 30 describe algorithms
associated with Theorems 25 and 28, and formally define the ID, too. First we will need the
following lemma.

Lemma 23 Suppose that l is a positive integer, S is an arbitrary set containing at least l
points, and f1, f2, . . . , fl−1, fl are complex-valued functions on S that are linearly indepen-
dent.

Then, there exist l points x1, x2, . . . , xl−1, xl in S such that the vectors u(x1), u(x2),
. . . , u(xl−1), u(xl) are linearly independent, where, for any x ∈ S, u = u(x) is the l × 1
column vector with the entry

uk = fk(x). (7.1)

Proof. We apply Gaussian elimination with row pivoting (see, for example, Dahlquist and
Björck [13]) to the set of all 1 × l row vectors u(x)T for all x ∈ S, while ensuring that
all pivot vectors are non-zero via appropriate row-pivoting. The desired points x1, x2, . . . ,
xl−1, xl in S are those corresponding to the pivot rows (recall that the rows are indexed by
the elements of S). 2

Remark 24 All results of this chapter also apply in the real-valued case, provided that the
word “complex” is replaced with “real” everywhere.

Theorem 25 Suppose that S is a compact space, l and m are positive integers with l ≤ m,
and f1, f2, . . . , fm−1, fm are continuous complex-valued functions on S, such that at most
l of f1, f2, . . . , fm−1, fm are linearly independent.
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Then, there exist l points x1, x2, . . . , xl−1, xl in S and l functions g1, g2, . . . , gl−1, gl
on S such that

|gi(x)| ≤ 1 (7.2)

for any x ∈ S, and i = 1, 2, . . . , l − 1, l, and

f(x) =
l∑

i=1

f(xi) gi(x) (7.3)

for any x ∈ S and any function f defined on S via the formula

f(x) =
m∑
j=1

cj fj(x) (7.4)

for some complex numbers c1, c2, . . . , cm−1, cm.

Proof. Without loss of generality, we assume that f1, f2, . . . , fm−1, fm are linearly inde-
pendent, that is, that l = m.

We first choose the points x1, x2, . . . , xl−1, xl in S by maximizing the function

D(x1, x2, . . . , xl−1, xl) = | det A(x1, x2, . . . , xl−1, xl) |, (7.5)

where A = A(x1, x2, . . . , xl−1, xl) is the l × l matrix with the entry

Aj,k = fj(xk) (7.6)

for j, k = 1, 2, . . . , l − 1, l, and “det” takes the determinant. There exist l points x1, x2,
. . . , xl−1, xl in S such that D(x1, x2, . . . , xl−1, xl) achieves its maximal value, since S is
compact, and D is continuous (after all, f1, f2, . . . , fl−1, fl are continuous). Defining

B = max
x1, x2, ..., xl−1, xl∈S

D(x1, x2, . . . , xl−1, xl), (7.7)

we thus know that there are points x1, x2, . . . , xl−1, xl in S satisfying

D(x1, x2, . . . , xl−1, xl) = B. (7.8)

Moreover, it follows from Lemma 23 that B is strictly positive.
We next define the functions g1, g2, . . . , gl−1, gl on S via the formula

gi(x) =
det A(x1, x2, . . . , xi−2, xi−1, x, xi+1, xi+2, . . . , xl−1, xl)

det A(x1, x2, . . . , xl−1, xl)
(7.9)

(here, the numerator is the same as the denominator, but with x in place of xi). We then
obtain (7.3) by combining (7.9) and the Cramer rule applied to the linear system

A v = u, (7.10)
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where A = A(x1, x2, . . . , xl−1, xl) is defined in (7.6), v = v(x) is the l × 1 column vector
with the entry

vi = gi(x) (7.11)

for i = 1, 2, . . . , l − 1, l, and u = u(x) is the l × 1 column vector with the entry

ui = fi(x) (7.12)

for i = 1, 2, . . . , l − 1, l.
It follows from (7.7) that

D(x1, x2, . . . , xi−2, xi−1, x, xi+1, xi+2, . . . , xl−1, xl) ≤ B (7.13)

for any x ∈ S. Combining (7.9), (7.5), (7.8), and (7.13) yields (7.2). 2

Remark 26 Due to (7.2), the interpolation formula (7.3) is numerically stable.

Remark 27 The suppositions of Theorem 25 that S is a compact space and that f1, f2, . . . ,
fm−1, fm are continuous are not necessary in order to obtain a guarantee similar to (7.2).
See Martinsson, Rokhlin, and Tygert [40] for a version of Theorem 25 that supposes only
that S is an arbitrary set and that f1, f2, . . . , fm−1, fm are bounded.

Applied in the linear-algebraic setting, Theorem 25 above yields the following theorem.

Theorem 28 Suppose that l, m, and n are positive integers with l ≤ m and l ≤ n, and A
is an m× n matrix, such that the rank of A is at most l.

Then, there exist an m× l matrix B whose columns constitute a subset of the columns of
A, and an l × n matrix P, such that

Am×n = Bm×l Pl×n (7.14)

and
|Pi,k| ≤ 1 (7.15)

for i = 1, 2, . . . , l − 1, l, and k = 1, 2, . . . , n− 1, n.

Proof. By taking S to be a set consisting of n points, say y1, y2, . . . , yn−1, yn, in Theorem 25,
we obtain from (7.3) that

fj(yk) =
l∑

i=1

fj(xi) gi(yk) (7.16)

for j = 1, 2, . . . , m − 1, m and k = 1, 2, . . . , n − 1, n. Moreover, (7.16) yields (7.14), and
(7.2) yields (7.15), provided that

Aj,k = fj(yk) (7.17)

for j = 1, 2, . . . , m− 1, m and k = 1, 2, . . . , n− 1, n,

Bj,i = fj(xi) (7.18)

for j = 1, 2, . . . , m− 1, m and i = 1, 2, . . . , l − 1, l, and

Pi,k = gi(yk) (7.19)

for i = 1, 2, . . . , l − 1, l and k = 1, 2, . . . , n− 1, n. 2
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Remark 29 An interpolative decomposition (ID) of a matrix A consists of matrices B and
P such that (7.14) holds, the columns of B are also columns of A, and P is not too large; P
is the “interpolation matrix.” To compute an ID of A, we may start with its pivoted “Q R”
decomposition

Am×n = Qm×k Rk×n Πn×n, (7.20)

where Q is a complex m× k matrix whose columns are orthonormal, R is a complex upper-
triangular (meaning upper-trapezoidal) k × n matrix, and Π is a real n × n permutation
matrix. For details on the computation of the pivoted “Q R” decomposition in (7.20), see,
for example, Chapter 5 of Golub and Van Loan [22]. Defining S to be the leftmost k × k
block of R, and T to be the rightmost k × (n− k) block of R, so that

Rk×n =
(

Sk×k Tk×(n−k)
)
, (7.21)

we obtain from (7.20) and (7.21) that

Am×n = Bm×k Pk×n, (7.22)

where
Bm×k = Qm×k Sk×k (7.23)

and
Pk×n =

(
1k×k (S−1)k×k Tk×(n−k)

)
Πn×n. (7.24)

Combining (7.22) and (7.24) yields that Bm×k is the leftmost m×k block of Am×n (Π−1)n×n.
Therefore, the columns of B constitute a subset of the columns of A.

In practice, we generally find that the entries of P are not too large. To guarantee that
the absolute values of the entries of P are at most β, for some real number β > 1, we could
use the algorithm of Gu and Eisenstat [25], which in the worst case requires about logβ(n)
times more flops than classical pivoted “Q R” decomposition algorithms.

Thus, we may form the ID (7.22) of a matrix A by forming its pivoted “Q R” decom-
position (7.20) and then constructing B and P via (7.23) and (7.24), commensurate with
the partitioning of R in (7.21). Of course, the columns of B are just the columns of A
corresponding to the pivots used in forming the pivoted “Q R” decomposition (7.20). Also,
we do not need to form S−1 in (7.24) explicitly; we need only apply S−1 to each of the n− k
columns of T, that is, to solve n − k systems of linear-algebraic equations involving the
triangular matrix S.

Remark 30 Theorem 2 of Section 3 in Martinsson, Rokhlin, and Tygert [40] and Theo-
rem 3 in Cheng, Gimbutas, Martinsson, and Rokhlin [9] state the following generalization of
Theorem 28 (see also the original sources, such as Goreinov and Tyrtyshnikov [23]):

Suppose that m and n are positive integers, and A is a complex m×n matrix. Then, for
any positive integer k with k ≤ m and k ≤ n, there exist a complex k × n matrix P, and a
complex m× k matrix B whose columns constitute a subset of the columns of A, such that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 1,
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3. ‖P‖ ≤
√
k (n− k) + 1 (where ‖P‖ is the spectral norm of P),

4. the least (i.e., the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P−A‖ ≤
√
k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k+ 1)st

greatest singular value of A, and ‖B P−A‖ is the spectral norm of B P−A.

Of course, property 3 follows immediately from properties 1 and 2, and property 4 follows
immediately from property 1. Properties 1–4 guarantee the numerical stability of the ID.
Property 6 states that the rank-k approximation provided by the ID is accurate to within a
factor of

√
k (n− k) + 1 times the best possible (see Theorem 21 in Chapter 6).

While existing algorithms for computing B and P satisfying properties 1–6 above are
computationally expensive (see, for example, Gu and Eisenstat [25]), given a real number
β > 1, the algorithm of Gu and Eisenstat [25] produces B and P such that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than β,

3. ‖P‖ ≤
√
β2 k (n− k) + 1 (where ‖P‖ is the spectral norm of P),

4. the least (i.e., the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P − A‖ ≤
√
β2 k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the

(k+ 1)st greatest singular value of A, and ‖B P−A‖ is the spectral norm of B P−A.

In the worst case, the algorithm of Gu and Eisenstat [25] requires about logβ(n) times more
flops than the classical pivoted “Q R” decomposition algorithms.

Conveniently, a simple modification of the easily implemented algorithm described in
the preceding remark generally produces results satisfying properties 1–6 above, with a
reasonably small β. The modified algorithm is the same, except that (7.20) becomes

‖Am×n −Qm×k Rk×n Πn×n‖ ≤
√
β2 k (n− k) + 1 σk+1, (7.25)

where σk+1 is the (k+1)st greatest singular value of A, and ‖·‖ is the spectral norm. Usually
we have a desired precision, say ε, and instead of (7.20) we form a pivoted “Q R” decom-
position Q R Π such that ‖A −Q R Π‖ ≤ ε, by choosing the rank k of the approximation
Q R Π to A appropriately. We then construct the matrices B and P according to (7.23)
and (7.24), commensurate with the partitioning of R in (7.21), obtaining in place of (7.22)
the approximation

‖Am×n −Bm×k Pk×n‖ ≤ ε, (7.26)

where ε is the spectral-norm accuracy of the pivoted “Q R” decomposition Q R Π approx-
imating A. Again we can take the columns of B to be the columns of A corresponding to
the pivots used in forming the pivoted “Q R” decomposition. Moreover, we do not need to
form S−1 in (7.24) explicitly; we need only apply S−1 to each of the n−k columns of T, that
is, to solve n− k systems of linear-algebraic equations involving the triangular matrix S.
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Chapter 8

Fast methods for applying
nonoscillatory integral operators

In this chapter, we describe methods for rapidly applying certain special types of matrices to
arbitrary vectors, including many of the matrices that can be used in GMRES of Chapter 4
to solve discretized integral equations such as (3.6). The algorithms we describe are known
colloquially as “fast multipole methods” and their brethren. For simplicity and maximal
efficiency, we will be using the interpolative decomposition (ID) described in the previous
chapter, though similar techniques (such as the SVD) can work reasonably well.

8.1 Multipoles

Multipoles are expansions of functions (identical to Taylor expansions for functions of a
single complex variable) which permit the rapid application of certain integral operators to
arbitrary vectors. The fast computations of the present chapter require only the existence
of multipole expansions (or of analogous low-rank structure described later). In the present
section, we prove the existence, in Lemma 32.

Lemma 32 represents as a linear combination of 2m+1 functions g0, g1, g2, . . . , gm−1, gm,
and g̃1, g̃2, . . . , g̃m−1, g̃m (known as “multipoles”) the action of the kernelG0(x,y) = ln |x−y|,
as acting from an arbitrary finite number of points in R2 to any point separated by a factor
S from a disc containing the source points. Figure 8.1 illustrates the geometry. We will be
identifying points in R2 with numbers in the complex plane, and vice versa, in the standard
fashion. For convenience, we first prove Lemma 32 for a single source point (i.e., with n = 1
in Lemma 32), as the following lemma.

Lemma 31 Suppose that R and S are real numbers, and ρ, z0, and z1 are complex numbers,
such that R > 0, S > 1, and

|z1 − z0| ≤ R. (8.1)

Then,

|Φ(z)− Φm(z)| ≤ T

(S − 1)Sm
(8.2)
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for m = 1, 2, 3, . . . and any z ∈ C with

|z − z0| ≥ S ·R, (8.3)

where
Φ(z) = ρ ln |z − z1|, (8.4)

Φm(z) = c0 g0(z) +
m∑
j=1

cj gj(z) +
m∑
j=1

c̃j g̃j(z), (8.5)

c0 = f0 ρ, (8.6)

f0 = 1, (8.7)

cj = fj ρ, (8.8)

fj = − 1

2j

(
z1 − z0
R

)j
, (8.9)

c̃j = f̃j ρ, (8.10)

f̃j = − 1

2j

(
z1 − z0
R

)j
, (8.11)

g0(z) = ln |z − z0|, (8.12)

gj(z) =

(
R

z − z0

)j
, (8.13)

g̃j(z) =

(
R

z − z0

)j
, (8.14)

and
T = |ρ|. (8.15)

Proof. We define w via the formula

w =
z1 − z0
z − z0

(8.16)

and observe that
ln |z − z1| = ln |z − z0|+ ln |1− w| (8.17)

and that, combining (8.1) and (8.3),

|w| ≤ 1

S
. (8.18)

Since S > 1, (8.18) yields that

ln(1− w) =
∞∑
j=1

−wj

j
. (8.19)

34



From (8.19) and the fact that the real part of ln(1− w) is ln |1− w|, we get that∣∣∣∣∣ln |1− w| −
(

m∑
j=1

−wj

2j
+

m∑
j=1

−wj

2j

)∣∣∣∣∣ ≤
∞∑

j=m+1

|w|j

j
. (8.20)

The right-hand side of (8.20) has the bound

∞∑
j=m+1

|w|j

j
≤

∞∑
j=m+1

|w|j =
|w|m+1

1− |w|
. (8.21)

Combining (8.17), (8.20), (8.21), and (8.18) immediately yields (8.2). 2

The following lemma represents as a linear combination of 2m + 1 functions g0, g1, g2,
. . . , gm−1, gm, and g̃1, g̃2, . . . , g̃m−1, g̃m (known as “multipoles”) the action of the kernel
G0(x,y) = ln |x − y|, as acting from an arbitrary finite number of points in R2 to any
point separated by a factor S from a disc containing the source points; the lemma is a
slight modification of a lemma from Greengard and Rokhlin [24]. Figure 8.1 illustrates the
geometry. We will be identifying points in R2 with numbers in the complex plane, and vice
versa, in the standard fashion. The expansion with m = 0 is often called the “center-of-mass”
approximation, and is obviously a very efficient (though fairly inaccurate) representation.
Higher-order expansions (with m > 0) can be both efficient and accurate. Notice that m
does not have to be very large to ensure high accuracy.

Lemma 32 Suppose that n is a positive integer, R and S are real numbers, and ρ1, ρ2, . . . ,
ρn−1, ρn and z0, z1, z2, . . . , zn−1, zn are complex numbers, such that R > 0, S > 1, and

|zk − z0| ≤ R (8.22)

for k = 1, 2, . . . , n− 1, n.
Then,

|Φ(z)− Φm(z)| ≤ T

(S − 1)Sm
(8.23)

for m = 1, 2, 3, . . . and any z ∈ C with

|z − z0| ≥ S ·R, (8.24)

where

Φ(z) =
n∑
k=1

ρk ln |z − zk|, (8.25)

Φm(z) = c0 g0(z) +
m∑
j=1

cj gj(z) +
m∑
j=1

c̃j g̃j(z), (8.26)

c0 =
n∑
k=1

f0,k ρk, (8.27)
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f0,k = 1, (8.28)

cj =
n∑
k=1

fj,k ρk, (8.29)

fj,k = − 1

2j

(
zk − z0
R

)j
, (8.30)

c̃j =
n∑
k=1

f̃j,k ρk, (8.31)

f̃j,k = − 1

2j

(
zk − z0
R

)j
, (8.32)

g0(z) = ln |z − z0|, (8.33)

gj(z) =

(
R

z − z0

)j
, (8.34)

g̃j(z) =

(
R

z − z0

)j
, (8.35)

and

T =
n∑
k=1

|ρk|. (8.36)

Proof. This lemma follows immediately from Lemma 31. 2

Remark 33 The representation (8.26) is in fact numerically stable, since (8.30), (8.32),
(8.34), and (8.35) are at most 1 in magnitude, for any z ∈ C, j = 1, 2, . . . , m − 1, m, and
k = 1, 2, . . . , n− 1, n.

8.2 Linear-algebraic formulation

The following lemma interprets Lemma 32 in linear-algebraic terms. As Remark 35 below
discusses, these linear-algebraic properties enable fast computations. The lemma concerns
the action A of the kernel G0(x,y) = ln |x− y|, as acting from n points in a disc of radius
R in R2, to l points outside the concentric disc of radius 2R. The lemma states that the
accuracy σ2m+2(Al×n) of the best rank-(2m + 1) approximation to the matrix A improves
exponentially fast with increasing m, independent of the dimensions l and n of A. Again,
we will be identifying points in R2 and numbers in the complex plane.
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Figure 8.1: The points z1, z2, . . . , zn−1, zn are all closer than R units to z0. The points z
and w1, w2, . . . , wl−1, wl are all farther than R · S units from z0.

Lemma 34 Suppose that l and n are positive integers, R is a positive real number, and z0,
z1, z2, . . . , zn−1, zn and w1, w2, . . . , wl−1, wl are complex numbers, such that

|zk − z0| ≤ R (8.37)

for k = 1, 2, . . . , n− 1, n, and
|wi − z0| ≥ 2R (8.38)

for i = 1, 2, . . . , l − 1, l.
Then, the (2m+ 2)nd greatest singular value σ2m+2(A) of A satisfies

σ2m+2(Al×n) ≤
√
nl

2m
(8.39)

for any positive integer m with 2m + 1 < l and 2m + 1 < n, where A is the l × n matrix
whose entries are

Ai,k = ln |wi − zk| (8.40)

for i = 1, 2, . . . , l − 1, l and k = 1, 2, . . . , n− 1, n.

Proof. We will construct a rank-(2m+1) approximation Gl×(2m+1) ·F(2m+1)×n to Al×n such
that

‖Al×n −Gl×(2m+1) · F(2m+1)×n‖ ≤
√
nl

2m
, (8.41)

where ‖A−G F‖ is the spectral norm of A−G F; (8.39) follows immediately from (8.41),
due to (6.5). We define F to be the (2m+ 1)× n matrix whose entries are

Fj,k =


1, j = 1

− 1
2j−2

(
zk−z0
R

)j−1
, 2 ≤ j ≤ m+ 1

− 1
2j−2m−2

(
zk−z0
R

)j−m−1
, m+ 2 ≤ j ≤ 2m+ 1

(8.42)
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for j = 1, 2, . . . , 2m, 2m+ 1 and k = 1, 2, . . . , n− 1, n. We define G to be the l× (2m+ 1)
matrix whose entries are

Gi,j =


ln |wi − z0|, j = 1(

R
wi−z0

)j−1
, 2 ≤ j ≤ m+ 1(

R
wi−z0

)j−m−1
, m+ 2 ≤ j ≤ 2m+ 1

(8.43)

for i = 1, 2, . . . , l − 1, l and j = 1, 2, . . . , 2m, 2m+ 1. With S = 2, (8.23) yields that∣∣∣∣∣
n∑
k=1

(
Ai,k −

2m+1∑
j=1

Gi,j Fj,k

)
ρk

∣∣∣∣∣ ≤ 1

2m

n∑
k=1

|ρk| (8.44)

for i = 1, 2, . . . , l − 1, l and any complex numbers ρ1, ρ2, . . . , ρn−1, ρn. Combining (8.44)
and the Cauchy-Schwarz inequality yields that

l∑
i=1

∣∣∣∣∣
n∑
k=1

(
Ai,k −

2m+1∑
j=1

Gi,j Fj,k

)
ρk

∣∣∣∣∣
2

≤ nl

22m

n∑
k=1

|ρk|2 (8.45)

for any complex numbers ρ1, ρ2, . . . , ρn−1, ρn. Combining (8.45) and the definition of the
spectral norm yields (8.41), proving (8.39). 2

Remark 35 Because of (8.39), we may efficiently compute to high precision the result of
applying the matrix A defined in (8.40) to any arbitrary vector, assuming that the sources
z1, z2, . . . , zn−1, zn and targets w1, w2, . . . , wl−1, wl are well-separated, as depicted in
Figure 8.1. Indeed, due to (8.39) and (6.5), we may replace A to high precision with a
rank-(2m+ 1) matrix, decomposing Al×n ≈ Gl×(2m+1) ·F(2m+1)×n, and then applying F first
to any vector and then G to the result, instead of applying A directly. Similarly, we may
efficiently apply AT to an arbitrary vector to high precision, in effect swapping the sources
and the targets. Notice that m does not have to be very large to ensure high accuracy.

8.3 Multilevel compression

Suppose that n is a positive integer power of 2, and z1 = 1, z2 = 2, . . . , zn−1 = n− 1, zn = n
are n points in the interval [0, n]. Suppose also that A is the n× n matrix whose entries are

Aj,k = ln |zj − zk| (8.46)

for j = 1, 2, . . .n− 1, n and k = 1, 2, . . . , n− 1, n when j 6= k. In this section, we describe
a scheme for applying any such A rapidly and with high precision to arbitrary vectors. In
subsequent sections, we will accelerate this scheme even further. The scheme generalizes
essentially unchanged to arbitrary points z1, z2, . . . , zn−1, zn in the complex plane. As we
will see, the scheme also generalizes to many other matrices associated with points in one,
two, or three dimensions.
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n
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1

Row

Figure 8.2: The undarkened blocks in this decomposition of an n× n matrix are separated
from the diagonal. The darkened blocks are not separated from the diagonal, but there are
only 3n− 2 of them.

Consider any undarkened block B in the decomposition of A depicted in Figure 8.2. We
denote by I the set of column indices associated with this block B of A; we denote by H
the set of row indices associated with the block. It is easy to see that minj∈H |zj − z0| >
2 maxk∈I |zk − z0|, where z0 is the point minimizing maxk∈I |zk − z0|; that is, the points
associated with the rows of B are well-separated from the points associated with the columns
of B, as required in Lemma 34. We thus obtain a rank-(2m+ 1) approximation, say B̃, to B
via (8.39) and (6.5), such that ‖B−B̃‖ ≤ l/2m, where l is the dimension of B. This low-rank
approximation allows us to compute efficiently to high precision the result of applying B to
any arbitrary vector (see Remark 35). We define Cm to be the number of floating-point
operations (flops) required to apply B, divided by the dimension of B, so that the number of
flops required for applying B thus is Cm times the dimension of B. Of course, Cm = O(m).

Using these rank-(2m + 1) representations of the undarkened blocks in Figure 8.2, we
can apply all these blocks using less than 3Cmn log2(n) = O(mn log(n)) flops (as seen by
summing the costs in the rightmost column of Table 8.1). To apply the original matrix A
to a vector, we must add in the contributions from the darkened entries in Figure 8.2, which
requires O(n) flops (since there are 3n − 2 darkened entries). In all, applying the original
matrix A to high precision using the low-rank representations requires O(mn log(n)) flops.
The Euclidean norm of the difference between the actual result and the approximation
obtained via low-rank approximations is less than 3n log2(n)/2m, relative to the Euclidean
norm of the vector to which we are applying A. Thus, the accuracy improves exponentially
fast as m increases; m need not be very large to produce accuracy close to the machine
precision, even though applying the matrix A via this method requires only O(mn log(n))
flops.

We see, then, that the key property leading to fast algorithms is that there exist low-rank
matrices approximating the undarkened blocks in Figure 8.2 to high accuracy. The ranks
of these matrices ideally should be bounded by a small constant (preferably depending only
weakly on the accuracy of the approximations).
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Cost of applying to vectors
Dimension Number (Cm· Number · Dimension)

n/4 3 · (4− 2) Cm · 3 · (4− 2) · n/4
n/8 3 · (8− 2) Cm · 3 · (8− 2) · n/8
n/16 3 · (16− 2) Cm · 3 · (16− 2) · n/16

...
...

...
4 3 · (n/4− 2) Cm · 3 · (n/4− 2) · 4
2 3 · (n/2− 2) Cm · 3 · (n/2− 2) · 2
1 3 · (n− 2) Cm · 3 · (n− 2) · 1

Table 8.1: Undarkened blocks in Figure 8.2

8.4 Hierarchical construction

An especially efficient construction of the low-rank representations for the undarkened blocks
in Figure 8.2 proceeds hierarchically. For some small positive integer l, and for each collection
of l columns, say columns jl+ 1 through jl+ l for some nonnegative integer j, we construct
an interpolative decomposition (ID) for the matrix obtained by deleting the diagonal l × l
block and the l× l blocks neighboring the diagonal block above and below it. In Figure 8.3,
two such collections are labeled “a” and “b.”

For each collection of 2l columns, say columns 2jl+1 through 2jl+2l for some nonnegative
integer j, we could similarly construct an ID for the matrix obtained by deleting the diagonal
2l × 2l block and the 2l × 2l blocks neighboring the diagonal block above and below it; in
Figure 8.3, two such collections are labeled “c” and “d.” However, constructing the IDs
directly is less efficient than recycling the IDs for the collections of l columns: Let us focus
on the collection labeled “c” in Figure 8.3. As described in the previous paragraph, we have
already constructed IDs for the collections of size l that overlap with “c” — there are two such
collections, just like “a” and “b,” but overlapping with “c.” The IDs for these two narrower
collections consist of selected columns, along with interpolation matrices. To high precision,
the columns of the matrix for “c” are linear combinations of these selected columns, with
the coefficients in the linear combinations given by the entries in the interpolation matrices
(technically, this reconstruction is valid only in the parts of the columns in the region “c,” not
near the diagonal). We gather all these selected columns together into a matrix, delete the
entries from the 2l×2l diagonal block and its upper and lower 2l×2l neighbors, and form an
ID approximating the resulting matrix to high precision. This new ID selects a subset S of
columns from the collection of previously selected columns; the previously selected columns
are linear combinations of the subset, with the coefficients in the linear combinations given
by the entries in the interpolation matrix (again, this reconstruction is valid only in the parts
of the columns in the region “c,” not near the diagonal). Since we can already interpolate
from the previously selected columns to all columns in “c,” we can now interpolate from
S to all columns in “c,” by first interpolating to the previously selected columns, and then
interpolating from the previously selected columns to the rest.

Needless to say, we process in the same way all other collections of 2l columns, columns
2jl + 1 through 2jl + 2l for some nonnegative integer j. We then proceed to collections
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of 4l columns (including those for “e” and “f” in Figure 8.3), and then to collections of 8l
columns, and so on. We can process the rows similarly.

8.5 Hierarchical application

Using the hierarchical construction of the preceding section, we can accelerate the algorithm
of Section 8.3, eliminating the logarithmic factor from its operation count.

Consider any undarkened block B from the matrix A depicted in Figure 8.2; B represents
A restricted to mapping from indices in an interval S to indices in an interval T . Suppose
that 8 S is the interpolation matrix from the ID, constructed in Section 8.4, for the columns
in A corresponding to S. Suppose also that 8T is the transpose of the interpolation matrix
from the ID, constructed in Section 8.4, for the transposes of the rows in A corresponding
to T . If we then denote by AT←S the matrix formed from A by retaining only those entries
that are in both one of the columns selected for the ID and one of the rows selected for the
(other) ID, then 8T ·AT←S · 8 S is an accurate approximation to the block B.

Suppose further that B is larger than the smallest blocks in Figure 8.2. We then partition
S = S1 ∪ S2 into the union of its two halves, S1 and S2, and do the same with T = T1 ∪ T2.
The hierarchical construction of the previous section provides a slightly short and fat matrix
ES and a slightly tall and skinny matrix PT such that

8 S ≈ ES ·
(

8 S1 0
0 8 S2

)
, (8.47)

8T ≈
(

8T1 0

0 8T2

)
·PT . (8.48)

In order to apply the block B to a vector vS, we use the representation B ≈ 8T ·AT←S · 8 S
and partition vS:

vS =

(
vS1

vS2

)
, (8.49)

B · vS ≈ 8T ·AT←S · 8 S · vS. (8.50)

To use (8.50), we need to form 8 S · vS. Combining (8.47) and (8.49) yields that

8 S · vS ≈ ES ·
(

8 S1 · vS1

8 S2 · vS2

)
, (8.51)

allowing us to construct 8 S · vS efficiently, given 8 S1 · vS1 and 8 S2 · vS2 . We can obtain

8 S1 · vS1 and 8 S2 · vS2 similarly, via recursion (splitting in half S1 and S2, etc.).
Similarly, to apply 8T to a vector wT , we partition PT ·wT :

PT ·wT =

(
wT1

wT2

)
. (8.52)

Combining (8.48) and (8.52) yields that

8T ·wT ≈
(

8T1 ·wT1

8T2 ·wT2

)
. (8.53)
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Figure 8.3: “a,” “b,” “c,” “d,” “e,” and “f” are sets of entries consisting of contiguous
collections of columns of the displayed n × n matrix, without some of the entries near the
diagonal. Specifically, if k denotes the width in columns of a swath (say one of “a” or “b”),
then the diagonal k × k block and its two nearest k × k neighbors are omitted.

Of course, we will also need to apply 8T1 and 8T2 to vectors arising from blocks other than
B in the decomposition depicted in Figure 8.2. Rather than forming 8T1 ·wT1 and 8T2 ·wT2

at the stage in the procedure when wT1 and wT2 become available, we add wT1 to the other
vectors to which we must apply 8T1 , and add wT2 to the other vectors to which we must
apply 8T2 (and then recursively split in half T1 and T2, and repeat).

8.6 Tree organization

To tabulate the costs of the hierarchical application, we need a great deal of notation, de-
tailing the full procedure. The present and subsequent sections set up the required notation.

We will describe the algorithm as applicable in any dimension for any number of points.
However, for motivation, we consider the case when the set P of source points and the set Q
of target/test points both consist of points in R1, specifically the numbers 1, 2, . . . , n−1, n,
where n is some positive integer power of 2. The algorithm will be efficient when, as in
Section 8.3, there is a reasonably small positive integer m such that each of the blocks of
matrix entries indicated in Figure 8.2 that does not touch the diagonal can be accurately
approximated by a matrix of rank at most m. The multilevel algorithm efficiently applies the
whole matrix to a vector by applying each of the numerically low-rank blocks, and summing
up the results.

We will denote the entries of the matrix being applied by G(x, y), where x ∈ P and
y ∈ Q; G is known as the kernel of the interactions between points in P and points in Q.
We will denote the entries of the vector to which the matrix is being applied by ρ(x), where
x ∈ P ; ρ is known as the input charge distribution. The purpose of the algorithm is to
compute efficiently the sums ∑

x∈P

ρ(x)G(x, y) (8.54)
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Figure 8.4: The shaded cubes that surround the isolated dark black cube are all its patrons
— the source cubes that are of the same size as the dark black cube and that do not touch
it, but that do lie in the source cubes of the same size as the parent of the dark black cube
which touch the parent.

for all y ∈ Q.
In the remainder of the present section, as well as in Sections 8.7 and 8.8, we set notation

and construct explicit low-rank representations for the undarkened blocks in Figure 8.2.
We denote the dimension of the space containing P and Q by d; that is, P ⊆ Rd and

Q ⊆ Rd. We define the largest source cube to be a cube which contains all of the source
points, the points in P . We then choose a positive integer l, and form a tree structure
by recursively dividing any source cube containing more than l points into 2d source cubes
(known as children), each with half the sidelength of the parent. The operation count of the
algorithm will depend on l; later we will choose l ≈ m to minimize the operation count.

Similarly, we define the largest target/test cube to be a source cube which contains
all of the target/test points, the points in Q. We then form a tree structure by recursively
dividing any target/test cube containing more than l points into 2d target/test cubes (known
as children), each with half the sidelength of the parent.

For any target/test cube C, we say that B is a patron of C to mean that B is a source
cube of the same size as C that does not touch C, but that does lie in a cube of the same
size as the parent of C which touches the parent. Figure 8.4 displays a particular target/test
cube C in R2, as well as all the patrons of C.

8.7 Source tree

In this section, we detail the procedure from Section 8.4 for sources (columns in the matrix).
We first organize Rd in a tree for P , as in Section 8.6. We then mark all source cubes

as unprocessed. We sweep through all of the source cubes multiple times, processing during
every sweep each unprocessed cube whose children have all been processed (on the first
sweep, we process each cube which does not have any children).

To process a source cube C which does not have any children, we define PC to be the set
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of all points that lie in both P and C, i.e.,

PC = P ∩ C. (8.55)

To process a source cube C whose children have already been processed, we define PC to be
the union of all the sets UB defined below, with B ranging over all children B of C, i.e.,

PC =
⋃
B

UB, (8.56)

where the union is taken over all children of C.
We choose the smallest positive integer m such that we can construct an accurate ID for

every source cube C as follows: we construct a subset UC of at most m points from PC , and
at most m functions gC,z, with z ranging through UC , such that

fy(x) ≈
∑
z∈UC

fy(z) gC,z(x) (8.57)

for any x ∈ PC , and any y ∈ TC , where fy is the function defined on PC via the formula

fy(x) = G(x, y), (8.58)

and TC is the set of all points in Q that lie outside of both C and the cubes of the same
size as C that touch C. The range of gC,z should be reasonably small (lying entirely in the
interval [−2, 2], for example), to ensure numerical stability in accordance with the definition
of an ID. The operation count of the multilevel algorithm for the application of the matrix
to a vector will be at most a constant times m.

Remark 36 For each source cube C, the set UC contains at most m points and the set PC
contains at most 2dm points (at least when l ≤ 2dm).

8.8 Target/test tree

In this section, we detail the procedure from Section 8.4 for targets (rows in the matrix).
We now reverse the roles P and Q played in Section 8.7, gathering the points in Q

according to the cubes to which they belong.
We first organize Rd in a tree for Q, as in Section 8.6. We then mark all target/test cubes

as unprocessed. We sweep through all of the target/test cubes multiple times, processing
during every sweep each unprocessed cube whose children have all been processed (on the
first sweep, we process each cube which does not have any children).

To process a target/test cube C which does not have any children, we define QC to be
the set of all points that lie in both Q and C, i.e.,

QC = Q ∩ C. (8.59)

To process a target/test cube C whose children have already been processed, we define QC

to be the union of all the sets VB defined below, with B ranging over all children B of C,
i.e.,

QC =
⋃
B

VB, (8.60)

44



where the union is taken over all children of C.
We choose the smallest positive integer m such that we can construct an accurate ID for

every target/test cube C as follows: we construct a subset VC of at most m points from QC ,
and at most m functions hC,z, with z ranging through VC , such that

ex(y) ≈
∑
z∈VC

ex(z) hC,z(y) (8.61)

for any y ∈ QC , and any x ∈ SC , where ex is the function defined on QC via the formula

ex(y) = G(x, y), (8.62)

and SC is the set of all points in P that lie outside of both C and the cubes of the same
size as C that touch C. The range of hC,z should be reasonably small (lying entirely in the
interval [−2, 2], for example), to ensure numerical stability in accordance with the definition
of an ID. The operation count of the multilevel algorithm for the application of the matrix
to a vector will be at most a constant times m. For simplicity, we use the same integer m in
both the present section and the previous section, Section 8.7.

Remark 37 For each target/test cube C, the set VC contains at most m points and the set
QC contains at most 2dm points (at least when l ≤ 2dm).

8.9 Multilevel algorithm

In this section, we discuss details of the procedure from Section 8.5.
First, we discuss the rationale behind the algorithm. We use throughout the notation

from Sections 8.6, 8.7, and 8.8, assuming that the decompositions required there are already
available (Section 8.11 describes fast methods for constructing the required decompositions).

For any target/test cube C that does not have any children, we break up the sum (8.54)
that we want to compute as follows:

∑
x∈P

ρ(x) ex(y) =

ϕC(y) +
∑

x∈P\SC

ρ(x) ex(y)

 (8.63)

for any y ∈ QC , where

ϕC(y) =
∑
x∈SC

ρ(x) ex(y), (8.64)

ex is defined (8.62), QC is defined in (8.59), and SC is the set of all points in P that lie
outside of both C and the cubes of the same size as C that touch C.

Thus, knowing the values of ϕC defined in (8.64), we can use (8.63) to reconstruct the
sum ∑

x∈P

ρ(x) ex(y) =
∑
x∈P

ρ(x) G(x, y), (8.65)

where ex is defined (8.62). The last step, Step 5, of the full algorithm (detailed below)
uses (8.63).
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In order to calculate ϕC defined in (8.64) efficiently, we do the following. For any tar-
get/test cube C, we define the function ψC on QC (defined in (8.59) and (8.60)) via the
formula

ψC(y) =
∑
B

∑
x∈UB

ρB(x) G(x, y), (8.66)

where the leftmost sum in the right-hand side of (8.66) is taken over all patrons of C (see
Figure 8.4), UB is defined in Section 8.7, and the function ρB is defined on UB via the
recursion

ρB(z) =
∑
A

∑
x∈UA

ρA(x) gB,z(x), (8.67)

where the leftmost sum in the right-hand side of (8.67) is taken over all children of B, and
where gB,z is from (8.57), and UB and UA are defined in Section 8.7; if B does not have any
children, then we replace (8.67) with

ρB(z) =
∑
x∈PB

ρ(x) gB,z(x), (8.68)

where PB = P ∩B, as in (8.55), and gB,z is from (8.57). Please note that ψC defined in (8.66)
consists of reasonably short sums, evaluated at a reasonably small collection of points; this is
key to the efficiency of the multilevel algorithm. We will account for most of the interactions
between the source points in P and the target/test points in Q using these functions. Step 3
of the algorithm detailed below consists of using (8.66) to construct ψC . Step 2 calculates
ρB in (8.67), unrolling the recursion, with Step 1 calculating ρB in (8.68) for source cubes
that have no children.

Combining (8.57), (8.61), (8.64), (8.66), (8.67), and (8.68) yields that

ϕC(y) ≈

(
ψC(y) +

∑
z∈VC

ϕB(z) hC,z(y)

)
(8.69)

for any y ∈ QC , where B is the parent of C, ϕC and ϕB are defined in (8.64), ψC is defined
in (8.66), hC,z is from (8.61), VC is defined in Section 8.8, and QC is defined in (8.59)
and (8.60). Step 3 involves calculating ψC defined in (8.66). Step 4 uses (8.69) to obtain ϕC
defined in (8.64), given the analogous function ϕB for the parent B of C. Step 5 uses (8.63),
together with (8.57) and (8.68).

Remark 38 It is possible to accelerate the computation of the sum in (8.69), as well as the
associated computation in Step 4 below, using the fact that the set SB defined in Section 8.8
is a proper subset of SC (SB is the set of all points in P that lie outside of both B and the
cubes of the same size as B that touch B; SC is the set of all points in P that lie outside of
both C and the cubes of the same size as C that touch C). For simplicity, we will not be
taking advantage of this acceleration (though the acceleration can be substantial in practice).

The following five steps therefore comprise the complete multilevel algorithm. Steps 1
and 2 aggregate source points, Step 3 maps from source points to target/test points, and
Steps 4 and 5 disaggregate target/test points (in particular, Step 4 accumulates the results
of Step 3 from level to level).
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(1) For each source cube C that has no children, we compute the values of the function
ρC that is defined on UC (defined in Section 8.7) via the formula

ρC(z) =
∑
x∈PC

ρ(x) gC,z(x), (8.70)

where gC,z is from (8.57), and PC is defined in (8.55).

(2) We start by marking as processed all source cubes that have no children, and marking
as unprocessed all other cubes. Then, we sweep through all source cubes multiple
times, until all are processed. During every sweep, for each unprocessed source cube
C whose children have all been processed, we compute the value of the function ρC
defined on UC via the formula

ρC(z) =
∑
B

∑
x∈UB

ρB(x) gC,z(x), (8.71)

where the leftmost sum in the right-hand side of (8.71) is taken over all children of
C, and where gC,z is from (8.57), and UC and UB are defined in Section 8.7. We then
mark the cube C as processed.

(3) For each target/test cube C, we compute the values of the function ψC that is defined
on QC (defined in (8.59) and (8.60)) via the formula

ψC(y) =
∑
B

∑
x∈UB

ρB(x) G(x, y), (8.72)

where the leftmost sum in the right-hand side of (8.72) is taken over all patrons of C
(see Figure 8.4), and where ρB is defined in (8.70) and (8.71), and UB is defined in
Section 8.7.

(4) We start by defining the function ϕC on QC (defined in (8.59) and (8.60)) for the
largest target/test cube C, via the formula

ϕC(y) = ψC(y), (8.73)

where ψC is defined in (8.72). Then, we mark the largest target/test cube as processed
and all other cubes as unprocessed. Finally, we sweep through all target/test cubes
multiple times, until all are processed. During every sweep, for each unprocessed
target/test cube C whose parent has been processed, we compute the value of the
function ϕC that is defined on QC (defined in (8.59) and (8.60)) via the formula

ϕC(y) = ψC(y) +
∑
z∈VC

ϕB(z) hC,z(y), (8.74)

where B is the parent of C, ψC is defined in (8.72), hC,z is from (8.61), and VC is
defined in Section 8.8. We then mark the cube C as processed.
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(5) For each target/test cube C that has no children, we compute the value of the function
ΦC that is defined on QC (defined in (8.59)) via the formula

ΦC(y) = ϕC(y) + Σ1(y) + Σ2(y), (8.75)

where ϕC is defined in (8.73) and (8.74), and where

Σ1(y) =
∑
B

∑
x∈UB

ρB(x) G(x, y), (8.76)

with the leftmost sum in the right-hand side of (8.76) being taken over all childless
source cubes that do not touch C but that do lie in the cubes of the same size as C
that touch C, with ρB defined in (8.70), and

Σ2(y) =
∑
B

∑
x∈P∩B

ρ(x) G(x, y), (8.77)

with the leftmost sum in the right-hand side of (8.77) being taken over both C itself
and all childless source cubes which are not separated from C by at least a cube of
their own size.

The desired sums in (8.54) are the values of the result Φ from the fifth, last step (5) (the
function ΦC in (8.75) is just the restriction of Φ to QC = Q ∩ C).

For an alternative using the singular value decomposition in place of interpolation, see
Gimbutas and Rokhlin [21]. For (sometimes dramatic) accelerations, see Cheng, Greengard,
and Rokhlin [10], and Martinsson and Rokhlin [39].

Figure 8.2 displays the squares in the matrix representation of a linear operator formed
by the Cartesian products of the pairs of source and target/test intervals involved in the
third step (3) (the undarkened squares), as well as by the pairs of source and target/test
intervals involved in the fifth, last step (5). Obviously, the Cartesian products of the pairs
of intervals from the third step (3) and fifth step (5) cover the matrix representation exactly
once, with no overlap.

8.10 Computational costs

In this section, we tabulate the numbers of floating-point operations and words of memory
required by the algorithm described in Section 8.9.

First, we estimate the number of source and target cubes. Suppose that there are n
source points, i.e., P consists of n points. Then, it follows from the fact that the parent of
any childless source cube contains at least l points (see Section 8.6), that there are at most
n/l such parent cubes. Therefore, since any such parent cube has at most 2d children, there
are at most 2d n/l source cubes that do not have any children.

Now, suppose also that there are at most log2(1/ε) levels in the 2d-ary tree of source
cubes, where ε is the precision of computations, the precision of the approximations (8.57)
and (8.61). (See Nabors, Korsmeyer, Leighton, and White [47] for a superior but more
complicated algorithm that has similar operation counts even without the assumption that
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there are only log2(1/ε) levels in the 2d-ary trees of source and target/test cubes. The
assumption is valid in most applications, however, since it is usually possible to arrange for
the closest pair of source points to be separated by at least ε, and for the closest pair of
target/test points to be separated by at least ε, as well.) Combining the fact that there are
at most 2d n/l source cubes that have no children, and the fact that each such cube has at
most log2(1/ε) ancestors, yields that there are at most

nP = 2d (n/l) log2(1/ε) (8.78)

source cubes in total.
Next, suppose for simplicity that, as with the source points, there are n target/test points,

i.e., Q consists of n points. Suppose also that there are at most log2(1/ε) levels in the 2d-ary
tree of target/test cubes. Then, similarly, there are at most

nQ = 2d (n/l) log2(1/ε) (8.79)

target/test cubes in total.
Keeping in mind Remarks 36 and 37, we obtain the following costs for the corresponding

steps of the algorithm described in Section 8.9.

(1) There at most 2d n/l source cubes that have no children, at most m points in each UC ,
and at most l points in each PC . Thus, Step 1 costs at most O(2d l mn/l).

(2) There at most nP source cubes, at most 2d children of any cube, and at most m points
in any UC . Thus, Step 2 costs at most O(2dm2 nP ).

(3) There are at most nQ target/test cubes, at most 2dm points in each QC , at most m
points in each UB, and at most 6d − 3d patrons of C (see Figure 8.4). Thus, Step 3
costs at most O((6d − 3d) 2dm2 nQ).

(4) There at most nQ target/test cubes, at most 2dm points in each QC , and at most m
points in each VC . Thus, Step 4 costs at most O(2dm2 nQ).

(5) For any source cube C that has no children, and any fixed size of cube at least as large
as C, there are at most 3d test cubes of that size for which C lies in a cube of that
same size that touches one of the 3d cubes. Therefore, since there are at most 2d n/l
source cubes that have no children, and at most log2(1/ε) different sizes of cubes, it
follows from (8.78) that there are at most 3d nP pairs of source and target/test cubes
in total involved in the sums (8.76). Similarly, there are at most 3d nP pairs of source
and target/test cubes in total involved the sums (8.77). Moreover, there are at most l
points in each QC , at most m points in each UB, and at most l points in each P ∩ B.
Thus, Step 5 costs at most O(3d l (l +m)nP ).

Overall, if we take l = m, then the whole procedure costs O((6d − 3d) 4dmn log2(1/ε)).
Suppressing the dependence on the dimension d, we find that the whole procedure costs

O(mn log2(1/ε)). (8.80)
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In many circumstances, m is proportional to log2(1/ε). The extra factor of log2(1/ε) is
usually not realized in practice. Clearly, the algorithm is efficient whenever m is not too
large; for many matrices from physics and engineering, m is not too large when the underlying
physical phenomena are not too oscillatory (for analogous algorithms that are efficient for
the matrices associated with wave equations that are highly oscillatory, see Cheng et al. [8]).

Remark 39 It is always more efficient to move to earlier steps some of the computations
associated with Step 5 described above. However, the more efficient algorithm is somewhat
more complicated.

8.11 Chebyshev series

The multipoles described in Section 8.1 are not the only efficient means for obtaining low-
rank approximations to the undarkened blocks in Figure 8.2. Often the matrix displayed in
Figure 8.2 arises from the discretization of an integral kernel whose blocks associated with
the undarkened blocks in Figure 8.2 are smooth as a function of the row and column indices.
In such cases, we may compress the undarkened blocks via any procedure for approximating
smooth functions. In this section, we describe Chebyshev series, which produce low-rank
approximations to smooth blocks.

Before discussing functions of both the row and column indices, we discuss functions of
just a single variable: Suppose that f is a uniformly smooth function on [−1, 1]. Then, we
define a function g on the whole real line via the formula

g(t) = f(cos t). (8.81)

It is easy to check that g is uniformly smooth on the whole real line, and, therefore, its Fourier
series (of period 2π) converges rapidly. For any positive integer m, we define gm to be the
sum of the first 2m − 1 terms in the Fourier series for g, the terms involving the constant
function, cos(t), sin(t), cos(2t), sin(2t), . . . , cos((m − 2)t), sin((m − 2)t), cos((m − 1)t),
sin((m− 1)t). (In fact, the coefficients of the sines in gm are all zeros, since g is even.) We
define fm on [−1, 1] via the formula

gm(t) = fm(cos t) (8.82)

for any real number t. fm is known as the mth Chebyshev approximation to f .
It follows from the fact that g is uniformly smooth that g − gm is uniformly small when

m is sufficiently large. Combining this fact, (8.81), and (8.82) yields that f−fm is uniformly
small when m is sufficiently large. Thus, the Chebyshev approximation fm approximates f
well when m is sufficiently large.

Suppose now that h is a uniformly smooth function on [−1, 1]× [−1, 1]. For example, h
could be a function whose values on a Cartesian grid are the matrix entries in an undarkened
block from Figure 8.2. For any y ∈ [−1, 1], we define f(x) = h(x, y), and observe as above
that fm is a good approximation to f when m is sufficiently large. Moreover, what constitutes
sufficiently large is independent of y. Therefore, there exist functions c0, c1, . . . , cm−2, cm−1
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on [−1, 1] (namely, the coefficients in the Fourier series or Chebyshev approximations) such
that

h(x, y) ≈
m−1∑
j=0

Tj(x) cj(y) (8.83)

for any x ∈ [−1, 1] and any y ∈ [−1, 1], where

cos(jt) = Tj(cos t) (8.84)

for any real number t and j = 0, 1, . . . , m− 2, m− 1. (8.83) provides a highly accurate ap-
proximation of rank at most m to any matrix whose entries are the values of h on a Cartesian
grid. Thus, Chebyshev series provide a convenient and reasonably efficient means for con-
structing low-rank approximations to blocks of a matrix that comes from the discretization
of an integral kernel that is smooth away from the diagonal.

Remark 40 The functions T0, T1, T2, . . . defined in (8.84) are “Chebyshev polynomials”
(the use of “T” stems from alternative transliterations from the Cyrillic of “Chebyshev,”
such as “Tchebycheff”). In fact, Tj is a polynomial of degree j for j = 0, 1, 2, . . . : Clearly,
T0 and T1 are polynomials of degree 0 and 1, namely T0(x) = 1 and T1(x) = x. The fact
that Tj is a polynomial of degree j for j = 2, 3, 4, . . . then follows by induction from the
recurrence relation

Tj(x) = 2xTj−1(x)− Tj−2(x) (8.85)

for j = 2, 3, 4, . . . . It is easy to verify (8.85), using (8.84) and the angle addition and
subtraction formulae (for cosine) to derive the equivalent recurrence relation

Tj+1(cos t) + Tj−1(cos t) = 2(cos t)Tj(cos t) (8.86)

for any real number t and j = 1, 2, 3, . . . .

Remark 41 Given any (possibly suboptimal) low-rank approximation to a matrix, there
exists an efficient algorithm for computing an optimal ID approximating the same matrix to
nearly the same precision; see Liberty et al. [37] or Halko et al. [26].
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Chapter 9

General references

In this chapter, we provide a sampling of references on background material.

Bound-state and impedance calculations: [4] [42] [54]
Calderón-Zygmund and wavelet theory: [43] [14] [38]
Complex analysis: [2]
Fourier analysis: [17] [30]
Functional analysis: [50] [34] [36] [52]
Mathematical methods in physics (including multipole/partial-wave expansions): [45][28][20]
Potential theory: [31] [44]
Scattering theory: [4] [42] [54]
Scientific computation: [13] [49] [55] [53] [22]
Special functions: [1] [56] [18]
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[35] J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power
and Lanczos algorithms with a random start, SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 1094–1122.

[36] P. D. Lax, Functional Analysis, John Wiley & Sons, New York, 2002.

[37] E. Liberty, F. Woolfe, P. Martinsson, V. Rokhlin, and M. Tygert, Ran-
domized algorithms for the low-rank approximation of matrices, Proc. Nat. Acad. Sci.
(USA), 104 (2007), pp. 20167–20172.

[38] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, Califor-
nia, second ed., 1999.

[39] P.-G. Martinsson and V. Rokhlin, An accelerated kernel-independent fast multi-
pole method in one dimension, SIAM J. Sci. Comput., 29 (2007), pp. 1160–1178.

[40] P.-G. Martinsson, V. Rokhlin, and M. Tygert, On interpolation and numeri-
cal integration in finite-dimensional spaces of bounded functions, Comm. Appl. Math.
Comput. Sci., 1 (2006), pp. 133–142.

[41] A. McIntosh and M. Mitrea, Clifford algebras and Maxwell’s equations in Lipschitz
domains, Math. Meth. Appl. Sci., 22 (1999), pp. 1599–1620.

[42] E. Merzbacher, Quantum Mechanics, John Wiley & Sons, New York, third ed., 1998.

[43] Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, UK,
English ed., 1992.

55



[44] S. Mikhlin, Integral Equations and Their Applications to Certain Problems in Me-
chanics, Macmillan, New York, second revised ed., 1964.

[45] P. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New
York, 1953.

[46] C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves,
Springer, Berlin, revised and enlarged translation with T. P. Higgins ed., 1969.

[47] K. Nabors, F. T. Korsmeyer, F. T. Leighton, and J. White, Preconditioned,
adaptive, multipole-accelerated iterative methods for three-dimensional first-kind integral
equations of potential theory, SIAM J. Sci. Comput., 15 (1994), pp. 713–735.

[48] N. Nishimura, Fast multipole accelerated boundary integral equation methods, Applied
Mechanics Reviews, 55 (2002), pp. 299–324.

[49] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes, Cambridge University Press, Cambridge, UK, second ed., 1992.

[50] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publications, Mineola, New
York, English ed., 1990.

[51] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Com-
put. Phys., 60 (1985), pp. 187–207.

[52] W. Rudin, Functional Analysis, McGraw-Hill, New York, second ed., 1991.

[53] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Ap-
plied Mathematics, Philadelphia, Pennsylvania, second ed., 2003.

[54] L. Schiff, Quantum Mechanics, McGraw-Hill, New York, third ed., 1990.

[55] E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Birkhauser, Boston,
1997.

[56] E. Weisstein, et al., MathWorld. Hosted and supported by Wolfram Research.
Available at http://mathworld.wolfram.com.

[57] N. Yarvin and V. Rokhlin, Generalized Gaussian quadratures and singular value
decompositions of integral operators, SIAM J. Sci. Comput., 20 (1998), pp. 699–718.

56


