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Abstract

Goodness-of-fit tests gauge whether a given set of observations is consistent (up to
expected random fluctuations) with arising as independent and identically distributed
(i.i.d.) draws from a user-specified probability distribution known as the “model.”
The standard gauges involve the discrepancy between the model and the empirical
distribution of the observed draws. Some measures of discrepancy are cumulative;
others are not. The most popular cumulative measure is the Kolmogorov-Smirnov
statistic; when all probability distributions under consideration are discrete, a natural
noncumulative measure is the Euclidean distance between the model and the empirical
distributions. In the present paper, both mathematical analysis and its illustration
via various data sets indicate that the Kolmogorov-Smirnov statistic tends to be more
powerful than the Euclidean distance when there is a natural ordering for the values
that the draws can take — that is, when the data is ordinal — whereas the Euclidean
distance is more reliable and more easily understood than the Kolmogorov-Smirnov
statistic when there is no natural ordering (or partial order) — that is, when the data
is nominal.
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1 Introduction

Testing goodness-of-fit is one of the foundations of modern statistics, as elucidated by Rao
(2002), for example. The formulation in the discrete setting involves n independent and
identically distributed (i.i.d.) draws from a probability distribution over m bins (“categories,”
“cells,” and “classes” are common synonyms for “bins”). In accordance with the standard
conventions, we will use p to denote the actual (unknown) underlying distribution of the
draws; p = (p(1), p(2), . . . , p(m)), with p(1), p(2), . . . , p(m) being nonnegative and

m
∑

j=1

p(j) = 1. (1)

We will use p0 to denote a user-specified distribution, usually called the “model”; again
p0 = (p

(1)
0 , p

(2)
0 , . . . , p

(m)
0 ), with p

(1)
0 , p

(2)
0 , . . . , p

(m)
0 being nonnegative and

m
∑

j=1

p
(j)
0 = 1. (2)

A goodness-of-fit test produces a value — the “P-value” — that gauges the consistency
of the observed data with the assumption that p = p0. In many formulations, the user-
specified model p0 consists of a family of probability distributions parameterized by θ, where
θ can be integer-valued, real-valued, complex-valued, vector-valued, matrix-valued, or any
combination of the many possibilities. In such cases, the P-value gauges the consistency of
the observed data with the assumption that p = p0(θ̂), where θ̂ is an estimate (taken to
be the maximum-likelihood estimate throughout the present paper). We now review the
definition of P-values.

P-values are defined via the empirical distribution p̂, where p̂ = (p̂(1), p̂(2), . . . , p̂(m)), with
p̂(j) being the proportion of the n observed draws that fall in the jth bin, that is, p̂(j) is
the number of draws falling in the jth bin, divided by n. P-values involve a hypothetical
experiment taking n i.i.d. draws from the assumed actual underlying distribution p = p0(θ̂).
We denote by P̂ the empirical distribution of the draws from the hypothetical experiment; we
denote by Θ̂ a maximum-likelihood estimate of θ obtained from the hypothetical experiment.
The P-value is then the probability that the discrepancy between the random variables P̂
and p0(Θ̂) is at least as large as the observed discrepancy between p̂ and p0(θ̂), calculating
the probability under the assumption that p = p0(θ̂).

To complete the definition of P-values, we must choose a measure of discrepancy. In the
present paper, we consider the (discrete) Kolmogorov-Smirnov and Euclidean distances,

d1(a, b) = max
1≤k≤m

∣

∣

∣

∣

∣

k
∑

j=1

a(j) −
k

∑

j=1

b(j)

∣

∣

∣

∣

∣

(3)
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and

d2(a, b) =

√

√

√

√

m
∑

j=1

(a(j) − b(j))2, (4)

respectively. The P-value for the Kolmogorov-Smirnov statistic is the probability that
d1(P̂ , p0(Θ̂)) ≥ d1(p̂, p0(θ̂)); the P-value for the Euclidean distance is the probability that
d2(P̂ , p0(Θ̂)) ≥ d2(p̂, p0(θ̂)). When evaluating the probabilities, we view P̂ and Θ̂ as ran-
dom variables, constructed with i.i.d. draws from the assumed distribution p = p0(θ̂), while
viewing the observed p̂ and θ̂ as fixed, not random.

If a P-value is very small, then we can be confident that the given observed draws are
inconsistent with the assumed model, are not i.i.d., or are both inconsistent and not i.i.d.

Needless to say, the Kolmogorov-Smirnov distance defined in (3) is the maximum absolute
difference between cumulative distribution functions. The Kolmogorov-Smirnov statistic
depends on the ordering of the bins, unlike the Euclidean distance.

As supported by the investigations below, we recommend using the Kolmogorov-Smirnov
statistic when there is a natural ordering of the bins, while the Euclidean distance is more
reliable and more easily understood than the Kolmogorov-Smirnov statistic when there is no
natural ordering (or partial order). Unlike the Euclidean distance, the Kolmogorov-Smirnov
statistic utilizes the information in a natural ordering of the bins, when the latter is available.
Horn (1977) gave similar recommendations when comparing the χ2 and Kolmogorov-Smirnov
statistics. Detailed comparisons between the Euclidean distance and χ2 statistics are avail-
able in Perkins et al. (2011a).

The Kolmogorov-Smirnov statistic is cumulative; it accentuates low-frequency differences
between the model and the empirical distribution of the draws, but tends to average away and
otherwise obscure high-frequency differences. Similar observations have been made by Pet-
titt and Stephens (1977), D’Agostino and Stephens (1986), Choulakian et al. (1994), From
(1996), Best and Rayner (1997), Haschenburger and Spinelli (2005), Steele and Chaseling
(2006), Lockhart et al. (2007), Ampadu (2008), and Ampadu et al. (2009), among others.
Our suggestions appear to be closest to those of Horn (1977).

There are many cumulative approaches similar to the Kolmogorov-Smirnov statistic.
These include the Cramér–von-Mises, Watson, Kuiper, and Rényi statistics, as well as their
Anderson-Darling variants; Section 14.3.4 of Press et al. (2007), Stephens (1970), and Rényi
(1953) review these statistics. We ourselves are fond of the Kuiper approach. However, the
present paper focuses on the popular Kolmogorov-Smirnov statistic; the Cramér–von-Mises,
Watson, and Kuiper variants are very similar.

The remainder of the present paper has the following structure: Section 2 describes how
the Euclidean distance is generally preferable to the Kolmogorov-Smirnov statistic when
there is no natural ordering (or partial order) of the bins. Section 3 describes how the
Kolmogorov-Smirnov statistic is generally preferable to the Euclidean distance when there
is a natural ordering of the bins. Section 4 illustrates both cases with examples of data
sets and the associated P-values, computing the P-values via Monte-Carlo simulations with
guaranteed error bounds. The reader may wish to begin with Section 4, referring back to
earlier sections as needed.
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2 The case when the bins do not have a natural order

The Euclidean distance is generally preferable to the Kolmogorov-Smirnov statistic when
there is no natural ordering (or partial order) of the bins. As discussed by Perkins et al.
(2011b), the interaction of parameter estimation and the Euclidean distance is easy to un-
derstand and quantify, at least asymptotically, in the limit of large numbers of draws. In
contrast, the interaction of parameter estimation and the Kolmogorov-Smirnov statistic can
be very complicated, though Choulakian et al. (1994) and Lockhart et al. (2007) have pointed
out that the interaction is somewhat simpler with Cramér’s and von Mises’, Watson’s, and
some of Anderson’s and Darling’s very similar statistics. That said, the Euclidean distance
can be more reliable even when there are no parameters in the model, that is, when the
model p0 is a single, fixed, fully specified probability distribution; the remainder of the
present section describes why.

The basis of the analysis is the following lemma, a reformulation of the fact that the
expected maximum absolute deviation from zero of the standard Brownian bridge is

√

π/2 ·
ln(2) ≈ .8687 (see, for example, Section 3 of Marsaglia et al., 2003).

Lemma 2.1. Suppose that m is even and that D(1), D(2), . . . , D(m) form a randomly ordered
list of m/2 positive ones and m/2 negative ones (with the ordering drawn uniformly at
random). Then,

E max
1≤k≤m

∣

∣

∣

∣

∣

k
∑

j=1

D(j)

∣

∣

∣

∣

∣

/

√
m −→

√

π/2 · ln(2) (5)

in the limit that m → ∞, where (as usual) E produces the expected value.

We denote by p the actual underlying distribution of the n observed i.i.d. draws. We
denote by p0 the model distribution. We denote by P̂ the empirical distribution of the n
draws. These are all probability distributions, that is, p(j) ≥ 0, p

(j)
0 ≥ 0, and P̂ (j) ≥ 0 for

j = 1, 2, . . . , m, and (1) and (2) hold.
Suppose that the actual underlying distribution p(1), p(2), . . . , p(m) of the draws is the

same as the model distribution p
(1)
0 , p

(2)
0 , . . . , p

(m)
0 ; the random variables P̂ (1), P̂ (2), . . . , P̂ (m)

are then the proportions of n i.i.d. draws from p0 that fall in the respective m bins. The
Euclidean distance is

U =

√

√

√

√

m
∑

j=1

(P̂ (j) − p
(j)
0 )2. (6)

The Kolmogorov-Smirnov statistic is

V = max
1≤k≤m

∣

∣

∣

∣

∣

k
∑

j=1

(P̂ (j) − p
(j)
0 )

∣

∣

∣

∣

∣

. (7)

The expected value of the square of the Euclidean distance is

EU2 =

m
∑

j=1

E (P̂ (j) − p
(j)
0 )2 =

m
∑

j=1

p
(j)
0

n
=

1

n
. (8)

4



As shown, for example, by Durbin (1972) using Lemma 2.1 above, the expected value of
√

n
times the Kolmogorov-Smirnov statistic is

EV
√

n →
√

π/2 · ln(2) ≈ .8687 (9)

in the limit that n → ∞ and max1≤j≤m p
(j)
0 → 0. Comparing (8) and (9), we see that U

and V are roughly the same size (inversely proportional to
√

n) when the actual underlying
distribution of the draws is the same as the model distribution.

However, when the actual underlying distribution of the draws differs from the model
distribution, the Euclidean distance and the Kolmogorov-Smirnov statistic can be very dif-
ferent. If the number n of draws is large, then the empirical distribution P̂ will be very
close to the actual distribution p. Therefore, to study the performance of the goodness-of-fit
statistics as n → ∞ when the actual distribution p differs from the model distribution p0

(and both are independent of n), we can focus on the difference between p and p0 (rather
than the difference between P̂ and p0). We now define and study the difference

d(j) = p(j) − p
(j)
0 (10)

for j = 1, 2, . . . , m. The Euclidean distance between p and p0 (the root-sum-square differ-
ence) is

u =

√

√

√

√

m
∑

j=1

(d(j))2. (11)

The Kolmogorov-Smirnov statistic (the maximum absolute cumulative difference) is

v = max
1≤k≤m

∣

∣

∣

∣

∣

k
∑

j=1

d(j)

∣

∣

∣

∣

∣

. (12)

For simplicity (and because the following analysis generalizes straightforwardly), let us
consider the illustrative case in which |d(1)| = |d(2)| = · · · = |d(m)|, that is,

|d(j)| = cm (13)

for all j = 1, 2, . . . , m, where cm is a positive real number (cm must always satisfy m ·cm ≤ 2,

since m · cm =
∑m

j=1 cm =
∑m

j=1 |d(j)| ≤
∑m

j=1[p
(j) + p

(j)
0 ] = 2). Combining (10), (1), and (2)

yields that
m

∑

j=1

d(j) = 0. (14)

Together, (14) and (13) imply that m is even and that half of d(1), d(2), . . . , d(m) are equal
to +cm, and the other half are equal to −cm.

Combining (13) and (11) yields that the Euclidean distance is

u =
√

m · cm. (15)

The fact that half of d(1), d(2), . . . , d(m) are equal to +cm, and the other half are equal to
−cm, yields that the Kolmogorov-Smirnov statistic v defined in (12) could be as small as cm
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or as large as m · cm/2, depending on the ordering of the signs in d(1), d(2), . . . , d(m). If all
orderings are equally likely (which is equivalent to ordering the bins uniformly at random),
then by Lemma 2.1 the mean value for v is

√

mπ/2 · ln(2) · cm ≈ √
m · .8687 · cm in the limit

that m is large (this is the expected maximum absolute deviation from zero of a tied-down
random walk with m steps, each of length cm, that starts and ends at zero; the random walk
ends at zero due to (14)).

Thus, in the limit that the number n of draws is large (and max1≤j≤m p
(j)
0 → 0, while

both the model p0 and the alternative distribution p are independent of n), the Euclidean
distance and the Kolmogorov-Smirnov statistic have similar statistical power on average, if
all orderings of the bins are equally likely. However, the Euclidean distance is the same for
any ordering of the bins, whereas the power of the Kolmogorov-Smirnov statistic depends
strongly on the ordering. We see, then, that the Euclidean distance is more reliable than
the Kolmogorov-Smirnov statistic when there is no especially natural ordering for the bins.

Remark 2.2. It is possible to use an ordering for which the Kolmogorov-Smirnov statistic
attains its greatest value (this corresponds to renumbering the bins such that the differences

D(j) = P̂ (j) − p
(j)
0 satisfy D(1) ≥ D(2) ≥ · · · ≥ D(m) or D(1) ≤ D(2) ≤ · · · ≤ D(m)). However,

this data-dependent ordering produces a statistic which is proportional to the l1 distance
∑m

j=1 |D(j)| (whereas the Euclidean distance is the l2 distance), as remarked at the top of
page 396 of Hoeffding (1965). The resulting statistic is no longer cumulative.

3 The case when the bins have a natural order

The Kolmogorov-Smirnov statistic is often preferable to the Euclidean distance when there is
a natural ordering of the bins. In fact, the Kolmogorov-Smirnov statistic is always preferable
when the data is very sparse and there is a natural ordering of the bins. In the limit that the
maximum expected number of draws per bin tends to zero, the Euclidean distance always
takes the same value under the null hypothesis, providing no discriminative power: indeed,
when the draws producing the empirical distribution P̂ are taken from the model distribution
p0, the Euclidean distance is almost surely 1/

√
n,

√

√

√

√

m
∑

j=1

(P̂ (j) − p
(j)
0 )2 =

1√
n

, (16)

in the limit that n · max1≤j≤m p
(j)
0 → 0 (the reason is that, in this limit, max1≤j≤m p

(j)
0 → 0

and moreover almost every realization of the experiment satisfies that, for all j = 1, 2,
. . . , m, P̂ (j) = 0 or P̂ (j) = 1/n, that is, there is at most one observed draw per bin). In
contrast, the Kolmogorov-Smirnov statistic is nontrivial even in the limit that the maximum
expected number of draws per bin tends to zero — in fact, this is exactly the continuum limit
for the original Kolmogorov-Smirnov statistic involving continuous cumulative distribution
functions (as opposed to the discontinuous cumulative distribution functions arising from
the discrete distributions considered in the present paper). Furthermore, the Kolmogorov-
Smirnov statistic is sensitive to symmetry (or asymmetry) in a distribution, and can detect
other interesting properties of distributions that depend on the ordering of the bins.
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4 Data analysis

This section gives four examples illustrating the performance of the Kolmogorov-Smirnov
statistic and the Euclidean distance in various circumstances. The Kolmogorov-Smirnov
statistic is more powerful than the Euclidean distance in the first two examples, for which
there are natural orderings of the bins. The Euclidean distance is more reliable than the
Kolmogorov-Smirnov statistic in the last two examples, for which any ordering of the bins
is necessarily rather arbitrary. We computed all P-values via Monte-Carlo simulations with
guaranteed error bounds, as in Remark 3.3 of Perkins et al. (2011a). Remark 3.4 of Perkins
et al. (2011a) proves that the standard error of the obtained estimate for a P-value P is
√

P (1 − P )/ℓ, where ℓ is the number of simulations conducted to calculate the P-value.

4.1 A test of randomness

A particular random number generator is supposed to produce an integer from 1 to 232

uniformly at random. The model distribution for such a generator is

p
(j)
0 = 2−32 (17)

for j = 1, 2, . . . , 232. We test the (obviously poor) generator which produces the numbers
1, 2, 3, . . . , n, in that order, so that the observed distribution of the generated numbers is

p̂(j) =

{

1/n, j = 1, 2, . . . , n
0, j = n + 1, n + 2, . . . , 232 (18)

for j = 1, 2, . . . , 232. For these observations, the P-value for the Euclidean distance is 1
to several digits of precision, while the P-value for the Kolmogorov-Smirnov statistic is 0 to
several digits, at least for n between a hundred and a million. So, as expected, the Euclidean
distance has almost no discriminative power for such sparse data, whereas the Kolmogorov-
Smirnov statistic easily discerns that the data (18) is inconsistent with the model (17).

Remark 4.1. Like the Euclidean distance, classical goodness-of-fit statistics such as χ2,
G2 (the log–likelihood-ratio), and the Freeman-Tukey/Hellinger distance are invariant to
the ordering of the bins, and also produce P-values that are equal to 1 to several digits
of precision, at least for n between a hundred and a million. For definitions and further
discussion of the χ2, G2, and Freeman-Tukey statistics, see Section 2 of Perkins et al. (2011a).

4.2 A test of Poissonity

A Poisson-distributed random number generator with mean 100 is supposed to produce a
nonnegative integer according to the model

p
(j)
0 =

100j

j! · exp(100)
(19)

for j = 0, 1, 2, 3, . . . . We test the (obviously poor) generator which produces the numbers
100, 101, 102, . . . , 109, so that the observed distribution of the numbers is

p̂(j) =

{

1/10, j = 100, 101, 102, . . . , 109
0, otherwise

(20)
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for j = 0, 1, 2, 3, . . . . The P-values, each computed via 4,000,000 simulations, are

• Kolmogorov-Smirnov: .0075

• Euclidean distance: .998

• χ2: .999

• G2 (the log–likelihood-ratio): .999

• Freeman-Tukey (the Hellinger distance): .998

For definitions and further discussion of the χ2, G2, and Freeman-Tukey statistics, see Sec-
tion 2 of Perkins et al. (2011a). The Kolmogorov-Smirnov statistic is far more powerful for
this example, in which the bins have a natural ordering (in this example the bins are the
nonnegative integers).

Figure 1 plots the model probabilities p
(0)
0 , p

(1)
0 , p

(2)
0 , . . . defined in (19) along with the

observed proportions p̂(0), p̂(1), p̂(2), . . . defined in (20). Figure 2 plots the model probabilities

p
(0)
0 , p

(1)
0 , p

(2)
0 , . . . along with analogues of the proportions p̂(0), p̂(1), p̂(2), . . . for a simulation

generating 10 i.i.d. draws according to the model.
Figure 3 plots the cumulative model probabilities p

(0)
0 , p

(0)
0 + p

(1)
0 , p

(0)
0 + p

(1)
0 + p

(2)
0 , . . .

along with the cumulative observed proportions p̂(0), p̂(0) + p̂(1), p̂(0) + p̂(1) + p̂(2), . . . .
Figure 4 plots the cumulative model probabilities p

(0)
0 , p

(0)
0 + p

(1)
0 , p

(0)
0 + p

(1)
0 + p

(2)
0 , . . .

along with analogues of the cumulative proportions p̂(0), p̂(0) + p̂(1), p̂(0) + p̂(1) + p̂(2), . . .
for the simulation generating 10 i.i.d. draws according to the model.

4.3 A test of Hardy-Weinberg equilibrium

In a population with suitably random mating, the proportions of pairs of Rhesus haplotypes
in members of the population (each member has one pair) can be expected to follow the
Hardy-Weinberg law discussed by Guo and Thompson (1992), namely to arise via random
sampling from the model

p
(j,k)
0 (θ1, θ2, . . . , θ9) =

{

2 · θj · θk, j > k
(θk)

2, j = k
(21)

for j, k = 1, 2, . . . , 9 with j ≥ k, under the constraint that

9
∑

j=1

θj = 1, (22)

where the parameters θ1, θ2, . . . , θ9 are the proportions of the nine Rhesus haplotypes in
the population (naturally, their maximum-likelihood estimates are the proportions of the

haplotypes in the given data). For j, k = 1, 2, . . . , 9 with j ≥ k, therefore, p
(j,k)
0 is the

expected probability that the pair of haplotypes in the genome of an individual is the pair
j and k, given the parameters θ1, θ2, . . . , θ9.
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Figure 1: Proportions associated with the bins for the observations
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Figure 2: Proportions associated with the bins for a simulation
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Figure 3: Cumulative proportions associated with the bins for the observations
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Figure 4: Cumulative proportions associated with the bins for the simulation from Figure 2
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In this formulation, the hypothesis of suitably random mating entails that the members
of the sample population are i.i.d. draws from the model specified in (21); if a goodness-of-fit
statistic rejects the model with high confidence, then we can be confident that mating has
not been suitably random.

Table 1 provides data on n = 8297 individuals; we duplicated Figure 3 of Guo and
Thompson (1992) to obtain Table 1. Figure 5 plots the associated P-values, each computed
via 90,000 Monte-Carlo simulations. The Kolmogorov-Smirnov statistic depends on the
ordering of the bins; for the first trial t = 1 in Figure 5, the order of the bins is the
lexicographical ordering, namely (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), . . . , (9, 9). The nine
trials t = 2, 3, . . . , 10 displayed in Figure 5 use pseudorandom orderings of the bins. Please
note that the Euclidean distance does not depend on the ordering.

Generally, a more powerful statistic produces lower P-values. In Figure 5, the P-values
for the Kolmogorov-Smirnov statistic are sometimes lower, sometimes higher than the P-
values for the Euclidean distance. There is no particularly natural ordering of the bins
for Figure 5; Figure 5 displays 10 different orderings corresponding to 10 different trials.
Figure 5 demonstrates that the Euclidean distance is more reliable than the Kolmogorov-
Smirnov statistic when there is no natural ordering (or partial order) for the bins.

Remark 4.2. The P-values for classical goodness-of-fit statistics are substantially higher;
the classical statistics are less powerful for this example. The P-values, each computed via
4,000,000 Monte-Carlo simulations, are

• Euclidean distance: .039

• χ2: .693

• G2 (the log–likelihood-ratio): .600

• Freeman-Tukey (the Hellinger distance): .562

For definitions and further discussion of the χ2, G2, and Freeman-Tukey statistics, see Sec-
tion 4.5 of Perkins et al. (2011a). Like the Euclidean distance, the χ2, G2, and Freeman-Tukey
statistics are all invariant to the ordering of the bins.

4.4 A test of uniformity

Table 2 duplicates Table 1 of Gilchrist (2010), giving the colors of the n = 62 pieces of candy
in a 2.17 ounce bag. Figure 6 plots the P-values for Table 2 to be consistent up to expected
random fluctuations with Table 3, the model of uniform proportions. We computed each P-
value via 4,000,000 Monte-Carlo simulations. The Kolmogorov-Smirnov statistic depends on
the ordering of the bins; the ten trials t = 1, 2, . . . , 10 displayed in Figure 6 use pseudorandom
orderings of the bins. The Euclidean distance does not depend on the ordering.

Generally, a more powerful statistic produces lower P-values. In Figure 6, the P-values
for the Kolmogorov-Smirnov statistic are sometimes lower, sometimes higher than the P-
values for the Euclidean distance. There is no particularly natural ordering of the bins for
Table 3; Figure 6 displays 10 different pseudorandom orderings corresponding to 10 different
trials. Figure 6 illustrates that the Euclidean distance is more reliable than the Kolmogorov-
Smirnov statistic when there is no natural ordering (or partial order) for the bins.
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Table 1: Frequencies of pairs of Rhesus haplotypes

k

j

j�
k 1 2 3 4 5 6 7 8 9

1 1236
2 120 3
3 18 0 0
4 982 55 7 249
5 32 1 0 12 0
6 2582 132 20 1162 29 1312
7 6 0 0 4 0 4 0
8 2 0 0 0 0 0 0 0
9 115 5 2 53 1 149 0 0 4
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Figure 5: P-values for Table 1 to be consistent with formula (21)
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Table 2: Observed frequencies of colors of candies in a 2.17 ounce bag

color red orange yellow green violet
number 15 9 14 11 13

Table 3: Expected frequencies of colors of candies in a 2.17 ounce bag

color red orange yellow green violet
number 12.4 12.4 12.4 12.4 12.4

Remark 4.3. Table 2 provides a possible means for ordering the bins. However, such an
ordering will depend on the observed data. Using a data-dependent ordering can profoundly
alter the nature of the goodness-of-fit statistic; see Remark 2.2.

Remark 4.4. Like the Euclidean distance, many classical goodness-of-fit statistics are in-
variant to the ordering of the bins. The following are P-values, each computed via 4,000,000
Monte-Carlo simulations:

• Euclidean distance: .770

• χ2: .770

• G2 (the log–likelihood-ratio): .766

• Freeman-Tukey (the Hellinger distance): .755

For definitions and further discussion of the χ2, G2, and Freeman-Tukey statistics, see Sec-
tion 2 of Perkins et al. (2011a). For this example, the Euclidean distance and the χ2 statistic
produce exactly the same P-values: for the model of homogeneous proportions, displayed in
Table 3, the Euclidean distance is directly proportional to the square root of the χ2 statistic,
and hence the Euclidean distance is a strictly increasing function of χ2.
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