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Abstract

A popular approach to significance testing proposes to decide whether the given
hypothesized statistical model is likely to be true (or false). Statistical decision theory
provides a basis for this approach by requiring every significance test to make a decision
about the truth of the hypothesis/model under consideration. Unfortunately, many in-
teresting and useful models are obviously false (that is, not exactly true) even before
considering any data. Fortunately, in practice a significance test need only gauge the
consistency (or inconsistency) of the observed data with the assumed hypothesis/model
— without enquiring as to whether the assumption is likely to be true (or false), or
whether some alternative is likely to be true (or false). In this practical formulation, a
significance test rejects a hypothesis/model only if the observed data is highly improb-
able when calculating the probability while assuming the hypothesis being tested; the
significance test only gauges whether the observed data likely invalidates the assumed
hypothesis, and cannot decide that the assumption — however unmistakably false —
is likely to be false a priori, without any data.

Essentially, all models are wrong, but some are useful. — G. E. P. Box
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1 Introduction

As pointed out in the above quotation of G. E. P. Box, many interesting models are false
(that is, not exactly true), yet are useful nonetheless. Significance testing helps measure
the usefulness of a model. Testing the validity of using a model for virtually any purpose
requires knowing whether observed discrepancies are due to inaccuracies or inadequacies in
the model or (on the contrary) could be due to chance arising from necessarily finite sample
sizes. Significance tests gauge whether the discrepancy between the model and the observed
data is larger than expected random fluctuations; significance tests gauge the size of the
unavoidable random fluctuations.

A traditional approach, along with its modern formulation in statistical decision theory,
tries to decide whether a hypothesized model is likely to be true (or false). However, in
many practical circumstances, a significance test need only gauge the consistency (or incon-
sistency) of the observed data with the assumed hypothesis/model — without ever enquiring
as to whether the assumption is likely to be true (or false), or whether some alternative is
likely to be true (or false). In this practical formulation, a significance test rejects a hypoth-
esis/model only if the observed data is highly improbable when calculating the probability
while assuming the hypothesis being tested. Whether or not the assumption could be exactly
true in reality is irrelevant.

An illustrative example may help clarify. When testing the goodness of fit for the Poisson
regression where the distribution of Y given x is the Poisson distribution of mean exp(θ(0) +
θ(1)x+ θ(2)x2 + θ(3)x3), the conventional Neyman-Pearson null hypothesis is

HNP
0 : there exist real numbers θ(0), θ(1), θ(2), θ(3) such that y1, y2, . . . , yn are independent

draws from the Poisson distributions with means µ1, µ2, . . . , µn, respectively, (1)

where
ln(µk) = θ(0) + θ(1)xk + θ(2)(xk)

2 + θ(3)(xk)
3 (2)

for k = 1, 2, . . . , n, and the observations (x1, y1), (x2, y2), . . . , (xn, yn) are ordered pairs of
scalars (real numbers paired with nonnegative integers). A related but perhaps simpler null
hypothesis is

H0 : y1, y2, . . . , yn are independent draws from the Poisson distributions

with means µ̂1, µ̂2, . . . , µ̂n, respectively, (3)

where
ln(µ̂k) = θ̂(0) + θ̂(1)xk + θ̂(2)(xk)

2 + θ̂(3)(xk)
3 (4)

for k = 1, 2, . . . , n, with θ̂ being a maximum-likelihood estimate. Needless to say, even if
the observed data really does arise from Poisson distributions whose means are exponentials
of a cubic polynomial, the particular values θ̂(0), θ̂(1), θ̂(2), θ̂(3) of the parameters of the fitted
polynomial will almost surely not be exactly equal to the true values. Even though the
estimated values of the parameters may not be exactly correct, it still makes good sense to
enquire as to whether the fitted cubic polynomial is consistent with the data up to random
fluctuations inherent in using a finite amount of observed data.
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In fact, since subsequent use of the model usually involves the particular fitted polynomial
— whose specification includes the observed parameter estimates — analyzing the model
including the estimated values of the parameters makes more sense than trying to decide
whether the data really did come from Poisson distributions whose means are exponentials
of some unspecified cubic polynomial. For instance, any plot of the fit (such as a plot of the
means of the Poisson distributions) must use the estimated values of the parameters, and
any statistical interpretation of the plot should also depend explicitly on the estimates;
a significance test can gauge the consistency of the plotted fit with the observed data,
without ever asking whether the plotted fit is the truth (it is almost surely not identical
to the underlying reality) and without making some decision about an abstract family of
polynomials which may or may not include both the plotted fit and the underlying reality.

A popular measure of divergence from the null hypothesis is the log–likelihood-ratio

g2 = 2
n
∑

k=1

yk ln(yk/µ̂k). (5)

A P-value (see, for example, Section 3 below) quantifies whether this divergence is larger than
expected from random fluctuations inherent in using only n data points. It is not obvious how
to calculate an exact P-value for HNP

0 from (1) and (2), which refers to cubic polynomials
with undetermined coefficients. In contrast, H0 from (3) and (4) refers explicitly to the
particular fitted value θ̂; H0 concerns the particular fit displayed in a plot, and is natural for
the statistical interpretation of such a plot.

Thus, when calculating significance, the assumed model should include the particular
values of any parameters estimated from the observed data. Such parameters are known as
“nuisance” parameters. As illustrated with H0 from (3) and (4), the assumed hypothesis
will be “simple” in the Neyman-Pearson sense, but will depend on the observed values of
the parameters — that is, the hypothesis will be “data-dependent”; the hypothesis will be
“random.” Including the particular values of the parameters estimated from the observed
data replaces the “composite” hypothesis of the conventional Neyman-Pearson formulation
with a “simple” data-dependent hypothesis. As discussed in Section 4 below, fully conditional
tests also incorporate the observed values of the parameters, but make the extra assumption
that all possible realizations of the experiment — observed or hypothetical — generate the
same observed values of the parameters. The device of a “simple data-dependent hypothesis”
such as H0 incorporates the observed values explicitly without the extra assumption.

For most purposes, a parameterized model is not really operational — that is, suitable
for making precise predictions — until its specification is completed via the inclusion of
estimates for any nuisance parameters. The results of the significance tests considered below
depend on the quality of both the models and the parameter estimators. However, the results
are relatively insensitive to the particular observed realizations of the parameter estimators
(that is, to the parameter estimates) unless specifically designed to quantify the quality of
the parameter estimates. To quantify the quality of the parameter estimates, we recommend
testing separately the goodness of fit of the parameter estimates, using confidence intervals,
confidence distributions, parametric bootstrapping, or significance tests within parametric
models, whose statistical power is focused against alternatives within the parametric family
constituting the model (for further discussion of the latter, see Section 5 below).
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The remainder of the present article has the following structure: Section 2 very briefly
discusses Bayesian-frequentist hybrids, referring for details to the definitive work of Gelman
(2003). Section 3 defines P-values — also known as “attained significance levels” — which
quantify the consistency of the observed data with the assumed models. Section 4 details
several approaches to testing the goodness of fit for distributional profile. Section 5 discusses
testing the goodness of fit for various properties beyond just distributional profile.

Cox (2006) details many advantages of interpreting significance as gauging the consistency
of an assumption/hypothesis with observed data, rather than as making decisions about the
actual truth of the assumption. However, significance testing is meaningless without any
observations, unlike purely Bayesian methods, which can produce results without any data,
courtesy of the prior (the prior is the statistician’s system of a priori beliefs, accumulated
from prior experience, law, morality, religion, etc., without reference to the observed data).
Significance tests are deficient in this respect. Those interested in what is to be considered
true in reality and in making decisions more generally should use Bayesian and sequential (in-
cluding multilevel) procedures. Significance testing simply gauges the consistency of models
with observed data; generally significance testing alone cannot handle the truth.

2 Bayesian versus frequentist

Traditionally, significance testing is frequentist. However, there exist Bayesian-frequentist
hybrids known as “Bayesian P-values”; Gelman (2003) sets forth a particularly appealing
formulation. Bayesian P-values test the consistency of the observed data with the model
used together with a prior for nuisance parameters. In contrast, the P-values discussed in
the present paper test the consistency of the observed data with the model used together

with a parameter estimator. In the Bayesian formulation, a P-value depends explicitly on
the choice of prior; in the formulation of the present paper, a P-value depends explicitly on
the choice of parameter estimator. Thus, when there are nuisance parameters, the two types
of P-values test slightly different hypotheses and provide slightly different information; each
type is ideal for its own set-up. Of course, if there are no nuisance parameters, then Bayesian
P-values and the P-values discussed below are the same.

3 P-values

A P-value for a hypothesis H0 is a statistic such that, if the P-value is very small, then
we can be confident that the observed data is inconsistent with assuming H0. The P-value
associated with a measure of divergence from a hypothesis H0 is the probability that D ≥ d,
where d is the divergence between the observed and the expected (with the expectation
following H0 for the observations), and D is the divergence between the simulated and the
expected (with the expectation following H0 for the simulations, and with the simulations
performed assuming H0). When taking the probability that D ≥ d, we view D as a random
variable, while viewing d as fixed, not random. For example, when testing the goodness of
fit for the model of i.i.d. draws from a probability distribution p0(θ), where θ is a nuisance
parameter that must be estimated from the data, that is, from observations x1, x2, . . . , xn,
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we use the null hypothesis

H0 : x1, x2, . . . , xn are i.i.d. draws from p0(θ̂),where θ̂ = θ̂(x1, x2, . . . , xn). (6)

The P-value for H0 associated with a divergence δ is the probability that D ≥ d, where

• d = δ(p̂, p0(θ̂)),

• p̂ is the empirical distribution of x1, x2, . . . , xn,

• θ̂ is the parameter estimate obtained from the observed draws x1, x2, . . . , xn,

• D = δ(P̂ , p0(Θ̂)),

• P̂ is the empirical distribution of i.i.d. draws X1, X2, . . . , Xn from p0(θ̂), and

• Θ̂ is the parameter estimate obtained from the simulated draws X1, X2, . . . , Xn.

If the P-value is very small, then we can be confident that the observed data is inconsistent
with assuming H0. Examples of divergences include χ2 (for categorical data) and the maxi-
mum absolute difference between cumulative distribution functions (for real-valued data).

Remark 3.1. To compute the P-value assessing the consistency of the experimental data
with assuming H0, we can use Monte-Carlo simulations (very similar to those used by Clauset
et al. (2009)). First, we estimate the parameter θ from the n given experimental draws,
obtaining θ̂, and calculate the divergence between the empirical distribution and p0(θ̂). We
then run many simulations. To conduct a single simulation, we perform the following three-
step procedure:

1. we generate n i.i.d. draws according to the model distribution p0(θ̂), where θ̂ is the
estimate calculated from the experimental data,

2. we estimate the parameter θ from the data generated in Step 1, obtaining a new
estimate θ̃, and

3. we calculate the divergence between the empirical distribution of the data generated in
Step 1 and p0(θ̃), where θ̃ is the estimate calculated in Step 2 from the data generated
in Step 1.

After conducting many such simulations, we may estimate the P-value for assuming H0

as the fraction of the divergences calculated in Step 3 that are greater than or equal to
the divergence calculated from the empirical data. The accuracy of the estimated P-value is
inversely proportional to the square root of the number of simulations conducted; for details,
see Remark 3.2 below.

Remark 3.2. The standard error of the estimate from Remark 3.1 for an exact P-value P
is
√

P (1− P )/ℓ, where ℓ is the number of Monte-Carlo simulations conducted to produce
the estimate. Indeed, each simulation has probability P of producing a divergence that is
greater than or equal to the divergence corresponding to an exact P-value of P . Since the
simulations are all independent, the number of the ℓ simulations that produce divergences
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greater than or equal to that corresponding to P-value P follows the binomial distribution
with ℓ trials and probability P of success in each trial. The standard deviation of the number
of simulations whose divergences are greater than or equal to that corresponding to P-value
P is therefore

√

ℓP (1− P ), and so the standard deviation of the fraction of the simulations

producing such divergences is
√

P (1− P )/ℓ. Of course, the fraction itself is the Monte-
Carlo estimate of the exact P-value (we use this estimate in place of the unknown P when
calculating the standard error

√

P (1− P )/ℓ).

4 Goodness of fit for distributional profile

Given observations x1, x2, . . . , xn, we can test the goodness of fit for the model of i.i.d.
draws from a probability distribution p0(θ), where θ is a nuisance parameter, via the null
hypothesis

H0 : x1, x2, . . . , xn are i.i.d. draws from p0(θ̂)

for the particular observed value of θ̂ = θ̂(x1, x2, . . . , xn). (7)

The Neyman-Pearson formulation considers instead the null hypothesis

HNP
0 : there exists a value of θ such that x1, x2, . . . , xn are i.i.d. draws from p0(θ). (8)

The fully conditional null hypothesis is

HFC
0 : x1, x2, . . . , xn are i.i.d. draws from p0(θ̂)

and θ̂ = θ̂(x1, x2, . . . , xn) takes the same value in all possible realizations. (9)

That is, whereas H0 supposes that the particular observed realization of the experiment
happened to produce a parameter estimate θ̂ that is consistent with having drawn the data
from p0(θ̂), H

FC
0 assumes that every possible realization of the experiment — observed or

hypothetical — produces exactly the same parameter estimate. Few experimental apparatus
constrain the parameter estimate to always take the same (a priori unknown) value during
repetitions of the experiment, as HFC

0 assumes. Assuming HFC
0 amounts to conditioning on a

statistic that is minimally sufficient for estimating θ; computing the associated P-values is not
always trivial. Furthermore, the assumption that HFC

0 is true seems to be more extreme, a
more substantial departure from HNP

0 , than H0. Finally, testing the significance of assuming
H0 would seem to be more apropos in practice for applications in which the experimental
design does not enforce that repeated experiments always yield the same value for p0(θ̂). We
cannot recommend the use ofHFC

0 in general. Unfortunately, HNP
0 also presents problems. . . .

If the probability distributions are discrete, there is no obvious means for defining an
exact P-value for HNP

0 when HNP
0 is false; moreover, any P-value for HNP

0 when HNP
0 is

true would depend on the correct value of the parameter θ, and the observed data does
not determine this value exactly. The situation may be more favorable when measuring
discrepancies with divergences that are “approximately ancillary” with respect to θ, but
quantifying “approximately” seems to be problematic except in the limit of large numbers of
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draws. (Some divergences are asymptotically ancillary in the limit of large numbers of draws,
but this is not especially helpful, as any asymptotically consistent estimator θ̂ converges to
the correct value in the limit of large numbers of draws; θ is almost surely known exactly in
the limit of large numbers of draws, so there is no benefit to being independent of θ in that
limit.) Section 3 of Robins and Wasserman (2000) reviews these and related issues.

Remark 4.1. Romano (1988), Henze (1996), Bickel et al. (2006), and others have shown
that the P-values for H0 converge in distribution to the uniform distribution over [0, 1] in the
limit of large numbers of draws, when HNP

0 is true. In particular, Romano (1988) and Henze
(1996) prove this convergence for a wide class of divergence measures.

Remark 4.2. The surveys of Agresti (1992) and Agresti (2001) discuss exact P-values for
contingency-tables/cross-tabulations, including criticism of fully conditional P-values. Gel-
man (2003) provides further criticism of fully conditional P-values. Ward (2012) numerically
evaluates the different types of P-values for an application in population genetics. Section 4
of Bayarri and Berger (2004) and the references it cites discuss the menagerie of alternative
P-values proposed recently.

5 Goodness of fit for various properties

For comparative purposes, we first review the null hypothesis of the previous section for
testing the goodness of fit for distributional profile, namely

H0 : x1, x2, . . . , xn are i.i.d. draws from p0(θ̂),where θ̂ = θ̂(x1, x2, . . . , xn), (10)

with θ being the nuisance parameter. The measure of discrepancy for H0 is usually taken to
be a divergence between the empirical distribution p̂ and the model p0(θ̂) (in the continuous
case in one dimension, a common characterization of the empirical distribution is the empir-
ical cumulative distribution function; in the discrete case, a common characterization of the
empirical distribution is the empirical probability mass function, that is, the set of empirical
proportions). One example for p0 is the Zipf distribution over m bins with parameter θ, a
discrete distribution with the probability mass function

p
(j)
0 (θ) =

Cθ

jθ
(11)

for j = 1, 2, 3, . . . , m, where the normalization constant is

Cθ =
1

∑m

j=1 j
−θ

(12)

and θ is a nonnegative real number.
When testing the goodness of fit for parameter estimates, we use the null hypothesis

H ′

0 : x1, x2, . . . , xn are i.i.d. draws from p0(φ0, θ̂),where θ̂ = θ̂(x1, x2, . . . , xn), (13)

with θ being the nuisance parameter and φ being the parameter of interest (and with φ0

being the value of φ assumed under the model). Please note that H0 and H ′

0 are actually

7



equivalent, via the identification p0(θ) = p0(φ0, θ). However, the measure of discrepancy for
H ′

0 is usually taken to be a divergence between φ̂ and φ0 rather than the divergence between
p̂ and p0(θ̂) that is more natural for H0. Also, if φ is scalar-valued, then confidence intervals,
confidence distributions, and parametric bootstrap distributions are more informative than
a significance test. A significance test is appropriate if φ is vector-valued. One example
for p0 is the sorted Zipf distribution over m bins with θ being the power in the power law
and with the maximum-likelihood estimate φ̂ being a permutation that sorts the bins into
rank-order, that is, p0 is the discrete distribution with the probability mass function

p
(j)
0 (φ, θ) =

Cθ

(φ(j))θ
(14)

for j = 1, 2, 3, . . . , m, where the normalization constant Cθ is defined in (12) with θ being
a nonnegative real number, and φ is a permutation of the numbers 1, 2, . . . , m. The choice
for φ0 that is of widest interest in applications is the identity permutation (that is, the
“rearrangement” of the bins that does not permute any bins: φ0(j) = j for j = 1, 2, . . . , m).

When testing the goodness of fit for the standard Poisson regression with the distribution

of Y given x being the Poisson distribution of mean exp
(

θ(0) +
∑m

j=1 θ
(j)x(j)

)

, we use the

null hypothesis

H ′′

0 : y1, y2, . . . , yn are independent draws from the Poisson distributions with means

exp

(

θ̂(0) +

m
∑

j=1

θ̂(j)x
(j)
1

)

, exp

(

θ̂(0) +

m
∑

j=1

θ̂(j)x
(j)
2

)

, . . . , exp

(

θ̂(0) +

m
∑

j=1

θ̂(j)x(j)
n

)

,

respectively, (15)

where θ is the nuisance parameter and θ̂ is a maximum-likelihood estimate. The measure
of discrepancy for H ′′

0 is usually taken to be the log–likelihood-ratio (also known as the
deviance)

g2 = 2

n
∑

k=1

yk ln(yk/µ̂k), (16)

where µ̂k is the mean of the Poisson distribution associated with yk in H ′′

0 , namely,

µ̂k = exp

(

θ̂(0) +
m
∑

j=1

θ̂(j)x
(j)
k

)

. (17)

One example is the cubic polynomial

ln(µk) = θ(0) + θ(1)xk + θ(2)(xk)
2 + θ(3)(xk)

3 (18)

for k = 1, 2, . . . , n, which comes from the choice m = 3 and

x
(1)
k = xk; x

(2)
k = (xk)

2; x
(3)
k = (xk)

3 (19)

for k = 1, 2, . . . , n, given observations as ordered pairs of scalars (x1, y1), (x2, y2), . . . ,
(xn, yn). Of course, there are similar formulations for other generalized linear models, such
as those discussed by McCullagh and Nelder (1989).
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