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1. Introduction

Given n observations, each falling in one of m bins, we would like to test if these
observations are consistent with having arisen as independent and identically
distributed (i.i.d.) draws from a specified probability distribution py over the m
bins (po is known as the “model”). A natural measure of the deviation between
po and the observations is the square x, of the Euclidean distance between the
actually observed distribution of the draws and the expected distribution py,
that is,

Ta = Y ((Wa)k — (p0)1)?, (1)
k=1
where (Ya)1, (Ya)2s - -+, (Ya)m are the proportions of the n observations falling
in bins 1, 2, ..., m, respectively.

The “P-value” is then defined to be the probability that Xo > z,, where X
would be the same as z,, but constructed from n draws that definitely are taken
ii.d. from pg, that is,

Xo = Z((Yo)k — (po)r)?, (2)

k=1
where (Yp)1, (Yo)2, ..., (Yo)m are the proportions of n i.i.d. draws from pg
falling in bins 1, 2, ..., m, respectively. When calculating the P-value — the

probability that Xy > z, — we view X as a random variable while viewing z,
as a fixed number. If the P-value is small, then we can be confident that the
observed draws were not taken i.i.d. from the model py.

To characterize the statistical power of the P-value based on the Euclidean
distance, we consider n i.i.d. draws from the alternative distribution

Pa =po +a/Vn, (3)



Computing the asymptotic power of a Euclidean-distance test for goodness-of-fit 3

where a is a vector whose m entries satisfy > -, ar = 0. We thus need to
calculate the distribution of the square X, of the Euclidean distance,

Xa - Z((Ya)k - (Po)k)2, (4)

1

where (Ya)1, (Ya)2, - - -, (Ya)m are the proportions of n i.i.d. draws from p,, falling
in bins 1, 2, ..., m, respectively. Section 4 below provides an efficient method for
calculating the cumulative distribution function (cdf) of n- X, in the limit that
the number n of draws is large. Section 5 below then describes how to use such
a method to plot the cdf of the P-values; this cdf is the same as the statistical
power function of the hypothesis test based on the Euclidean distance (as a func-
tion of the significance level). Presenting this method is the principal purpose
of the present paper, complementing the earlier discussions of Perkins, Tygert,
and Ward (2011b) and Perkins, Tygert, and Ward (2011a), which compare the
Euclidean distance with classical statistics such as x?, the log-likelihood-ratio
G?, and other members of the Cressie-Read power-divergence family; Perkins,
Tygert, and Ward (2011b) and Perkins, Tygert, and Ward (2011a) review the
classical statistics and provide detailed comparisons.

As reviewed, for example, by Kendall et al. (2009) and Rao (2002), m-n - X,
defined in (4) converges in distribution to a noncentral x? in the limit that
the number n of draws is large, when the model py is a uniform distribution.
When pg is nonuniform, m - n - X, converges in distribution to the sum of the
squares of independent Gaussian random variables in the limit that the number
n of draws is large, as shown by Moore and Spruill (1975) and reviewed in
Section 2 below. Section 3 provides integral representations for the cdf of the sum
of the squares of independent Gaussian random variables and applies suitable
quadratures for their numerical evaluation. Section 4 summarizes the numerical
method obtained by combining Sections 2 and 3. Section 5 summarizes a scheme
for plotting the asymptotic power (as a function of the significance level) using
the method of Section 4. Section 6 illustrates the methods via several numerical
examples.

The extension to models with nuisance parameters is straightforward, follow-
ing Perkins, Tygert, and Ward (2011c); the present paper focuses on the simpler
case in which the model pq is a single, fully specified probability distribution.

2. Preliminaries

This section states Theorem 2.1, which is a special case of Theorem 4.2 of Moore
and Spruill (1975). Before stating the theorem, we need to set up some notation.
The set-up amounts to an algorithm for computing the real numbers o1, o9, ...

3

om—1 and (q, (o, ..., (m—1 used in Theorem 2.1, where m is an integer greater
than 1.
First, we aim to define the positive real numbers o1, 09, ..., om_1, given any

m X 1 vector py whose entries are all positive. We define D to be the diagonal
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m X m matrix

—1 ] =
D=4 @ I (5)
0, j#k
for 5,k =1, 2, ..., m. We define H to be the m x m matrix
1-L 5=k
Hi = { w (6)
for j,k = 1, 2, ..., m. Note that H is an orthogonal projector. We define

B = HDH, so that B is the self-adjoint m x m matrix

1 1 1 1 1 m 1 -
Bji = (Po); E((PO)J‘ + (p())k) T El:l o I k (7)

’ 1( 1 1 1 «m 1 )
‘E(@o)j + <po>k) o s o JFE
for j,k =1, 2, ..., m. As a self-adjoint matrix whose rank is m — 1 (after all,

B = HDH, H is an orthogonal projector whose rank is m — 1, and D is a
full-rank diagonal matrix), B given in (7) has an eigendecomposition

B=QAQ", (8)

where @ is a real unitary m x m matrix and A is a diagonal m x m matrix such
that Ay, = 0. Finally, we define the positive real numbers o1, 02, ..., om—1
via the formula

0'13 = 1/Ak,k (9)
fork=1,2,..., m—1, where Ay 1, Ao 2, ..., Ay, are the diagonal entries of
A from the eigendecomposition (8).

Next, we define the real numbers (1, (2, ..., (n-1, given both py and an

m X 1 vector a such that Y_;" | ar = 0. We define the (m — 1) x 1 vector

n=Q"a, (10)

where Q is the leftmost m x (m —1) block of @ from the eigendecomposition (8),
that is, @ is the same as @Q after deleting the last column of ). We can then
define the real numbers (1, (s, ..., (;n—1 via the formula

Gk =M/ 0k (11)

for k=1, 2,..., m—1, where n is defined in (10) and o is defined in (9).
With this notation, we can state the following special case of Theorem 4.2
of Moore and Spruill (1975).

Theorem 2.1. Suppose that m is an integer greater than one, pg is a probability
distribution over m bins (that is, po is an m X 1 vector whose entries are all
positive and >, (po)r = 1), a is an m x 1 vector such that > ;- ar =0, and
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(Yo)1, (Ya)ao, .., (Yo)m are the proportions of draws falling in bins 1, 2, ...,
m, respectively, out of a total of n i.i.d. draws from the probability distribution

Pa = po +a/V/n. (12)

Suppose further that X,, is the random variable

m

k=1
Then, X,, converges in distribution to the random variable

m—1
Xoo = o2 (Zy + Cx)? (14)
k=1

as n becomes large, where Zy, Zs, ..., Zm—1 are i.i.d. Gaussian random vari-
ables of zero mean and unit variance, o1, 02, ..., om—1 are the positive real
numbers defined in (9), and (1, Ca, ..., Guo1 are the real numbers defined
in (11). The values of o1, 02, ..., Om—1 do not depend on the vector a; the
values of (1, C2, ..., (m—1 do depend on a.

Remark 2.2. The m x m matrix B defined in (7) is the sum of a diagonal
matrix and a low-rank matrix. The methods of Gu and Eisenstat (1994, 1995)
for computing the eigenvalues of such a matrix B and computing the result
of applying QT from (8) to an arbitrary vector require only either O(m?) or
O(mlog(m)) floating-point operations. The O(m?) methods of Gu and Eisenstat
(1994, 1995) are usually more efficient than the O(mlog(m)) method of Gu and
Eisenstat (1995), unless m is impractically large.

3. Integral representations

This section describes efficient algorithms for evaluating the cdf of the sum (14)
of the squares of independent Gaussian random variables. The bibliography
of Duchesne and de Micheaux (2010) gives references to possible alternatives to
the methods of the present section. Our principal tool is the following theorem,
representing the cdf as an integral suitable for evaluation via quadratures (see,
for example, Remark 3.2 below); the theorem expresses formula 7 of Rice (1980)
in the same form as formula 8 of Perkins, Tygert, and Ward (2011b).

Theorem 3.1. Suppose that £ is a positive integer, Zy, Za, ..., Zy are i.i.d.
Gaussian random variables of zero mean and unit variance, and o1, 02, ..., 0¢
and (1, Ca, ..., (o are real numbers. Suppose in addition that X is the random
variable

4
X =0} (Zr+G) (15)

k=1
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Then, the cdf F' of X is

o0 -y giyVE TTE eCh(l—wi(y))/(2wk(y))
F(z) = / Im | &—C Hkl:l e 7 dy (16)
0 ™ (y - m) Hk:l w(y)
for any positive real number x, where
wi(y) =1 = 2(y — 1o} /x + 2iyoiV/t/x, (17)

and F(x) = 0 for any nonpositive real number x. The square roots in (16) denote
the principal branch, and Im takes the imaginary part.

Remark 3.2. An efficient means of evaluating (16) numerically is to employ
adaptive Gaussian quadratures; see, for example, Section 4.7 of Press et al.
(2007). Good choices for the lowest orders of the quadratures used in the adap-
tive Gaussian quadratures are 10 and 21, for double-precision accuracy.

The remainder of the present section (particularly Remark 3.5) discusses
the numerical stability of the method of Remark 3.2 and recalls an alternative
integral representation suitable for use when the method of Remark 3.2 is not
guaranteed to be numerically stable. The following lemma, proven in Remark 3.2
of Perkins, Tygert, and Ward (2011b), ensures that the denominator in (16) is
not too small.

Lemma 3.3. Suppose that £ is a positive integer, and r1, r2, ..., ¢ and y are
positive real numbers. Suppose further that (in parallel with formula (17) above)

wp=1—rgly—1)+ Tkiy\/z (18)

fork=1,2, ... ¢
Then,

> e /4, (19)

¢

[] v
k=1
The following lemma ensures that the numerator in (16) is not too large,

provided that e$+/2 is not large.

Lemma 3.4. Suppose that r, y, and £ are positive real numbers and (in parallel
with formulae (17) and (18) above)

w=1-r(y—1)+rigVe (20)
Then,
1—w
<1+ = 21
Eop o
Proof. Defining
z=- (22)
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and

we obtain that

— . 24
w 1—cz—iVi (24)
It follows from (24) that
1-wl?  (1-2)?
w|” (I1—2)2+¢ . (25)
w (I—c2)?2+¢
It follows from (22) that z > 0 and from (23) that ¢ > 1, and hence
cz—1>z—1. (26)
If z > 1, then (26) yields that
(2= 1) > (2 - 1)2, (27)
which in turn yields that
1=2)2+0  (1—-2)2+¢
< =1 28
(1—ec2)?24+¢~ (1—2)2+¢ (28)
If z <1, then (recalling that z > 0, too)
1—2)2 1—2)? 1
(1—2)2+7¢ _( z) +€S +€' (29)
(1—c2)?2+¢ 14 1
We see from (28) and (29) that, in all cases,
(1—2)2+¢ 1
— <14 -. 30
(1—c2)?2+0¢~ 7 (30)
Combining (25) and (30) yields (21). O

Remark 3.5. The bound (19) shows that the integrand in (16) is not too large
for any nonnegative y, provided that the numerator of (16) is not too large. An
upper bound on the numerator follows immediately from (21):

L L
H oSt (L=wi (¥))/ (2w (y)) < H eSeV/1+1/8/2. (31)
k=1 k=1

For any particular application, we can check that the right-hand side of (31) is
not too many orders of magnitude in size, guaranteeing that applying quadra-
tures to the integral in (16) cannot lead to catastrophic cancellation in floating-
point arithmetic. Naturally, it is also possible to check on the magnitude of the
integrand in (16) during its numerical evaluation, indicating even better nu-
merical stability than guaranteed by our a priori estimates. See Theorem 3.7
and Remark 3.8 below for an alternative integral representation suitable for use
when the right-hand side of (31) is large.
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Remark 3.6. The bound in (31) is quite pessimistic. In fact, the real part of
(1 — wi(y))/ (2w (y)) is often nonpositive, so that

eSil—wr )/ Cwr () | < 1, (32)

If the right-hand side of (31) is large, then we can use the method of Imhof
(1961), Davies (1980), and others, applying numerical quadratures to the inte-
gral in the following theorem. Please note that the integrand in the following
theorem decays reasonably fast when the right-hand side of (31) is large.

Theorem 3.7. Suppose that £ is a positive integer, Zy, Za, ..., Zy are i.i.d.
Gaussian random variables of zero mean and unit variance, and o1, 02, ..., 0y
and (1, Ca, ..., (¢ are real numbers. Suppose in addition that X is the random
variable ,
X => 0} (Z+ ) (33)
k=1

Then, the cdf F' of X is

o —iy TT¢ Crl—vk(y))/ (2vi(v))
_/ Im <6 [y elk ) dy (34)
0 7Y [Tee1 VOr(y)

F(z) =

N~

for any positive real number x, where
uk(y) =1 - 2iyo/z, (35)

and F(x) = 0 for any nonpositive real number x. The square roots in (34) denote
the principal branch, and Im takes the imaginary part.

Remark 3.8. The integrand in (34) is not too large (except for values of y
that are closer to 0 than are typical quadrature nodes), since the real part of
(1 —vi(y))/(2uk(y)) is always nonpositive, so that

G =ve @)/ o) | < 1. (36)

Moreover, the numerator in (34) decays reasonably fast (it is sub-Gaussian)
when the right-hand side of (31) is large.

4. Numerical method

Combining Sections 2 and 3 yields an efficient method for calculating the cdf F’
of n times the square of the Euclidean distance between the model and empirical
distributions, in the limit that n is large, when the n observed draws are taken
i.i.d. from an alternative distribution p, = pg+a/+/n (as always, pg is the model
— a probability distribution over m bins — and a is a vector whose m entries
satisfy >°7" ; ar = 0). Indeed, Theorem 2.1 shows that the desired F' is the same
as that in (16) and (34), with the real numbers o1, o2, ..., o¢ and (1, (2, ..., (o
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calculated as detailed in Section 2 (identifying £ = m —1). Remark 3.2 describes
an efficient means of evaluating F(z) in (16) that is numerically stable when
the right-hand side of (31) is not too many orders of magnitude in size. When
the right-hand side of (31) is many orders of magnitude in size, we can apply
quadratures to the representation of F'(z) in (34) instead (see Remark 3.8).

5. Plotting the asymptotic statistical power

Let us denote by 7 the cdf of the P-values for the Euclidean distance (or, equiv-
alently, for any positive multiple of the square of the Euclidean distance); 7 is
also the statistical power function of the hypothesis test based on the Euclidean
distance (as a function of the significance level). The method of Section 4 is
sufficient for plotting 7 in the limit that the number of draws is large. Indeed,
suppose that X denotes n times the square of the Euclidean distance between
the model and empirical distributions, Fy denotes the cdf for X when taking
n draws i.i.d. from the model probability distribution pg, and F, denotes the
cdf for X when taking n draws i.i.d. from p, = po + a/+/n, where a is a vector
whose m entries satisfy Y ;" ; ay = 0. The P-value P equals 1 — F(X), in the
limit that n is large, and then the cdf 7 of the P-values for draws from p, is

m(1 — Fy(z)) = Prob{P < 1— Fy(z)} = Prob{l — Fy(X) < 1— Fy(z)}
=Prob{X >z} =1-F,(x) (37)

for any nonnegative real number x; thus, the graph of all points (a, w(a)) with
a ranging from 0 to 1 is the same as the graph of all points (1 — Fy(z),1— F,(x))
with z ranging from 0 to oo, in the limit that n is large. Section 4 describes how
to evaluate Fy(x) and F,(x) for any real number z, in the limit that the number
n of draws is large; note that Fy(z) = F,(z) when the entries of a are all zeros,
so the procedure of Section 4 can evaluate Fy(x) as well as F,(z). When the
entries of a are all zeros, (; = (2 = --- = (¢, = 0 in the method of Section 4, and
then the right-hand side of (31) is exactly 1.

6. Numerical examples

This section illustrates the algorithms of the present paper via several numerical
examples. As detailed in the subsections below, we consider three examples for
the model pg (as always, po is a probability distribution over m bins, that is, a
vector whose entries are all positive and satisfy ;- (po)r = 1), taking n i.i.d.
draws from the alternative probability distribution

Pa = po +a/V/n, (38)

where a is a vector whose m entries satisfy Y., | ar = 0 (the subsections below
detail several examples for a). Figure 1 plots the cdf 7 of the P-values for n i.i.d.
draws taken from the alternative distribution p,, when n is large; 7 is also the
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statistical power function of the hypothesis test based on the Euclidean distance
(as a function of the significance level). For each of the examples, Figure 1 plots
the edf 7 both for n = 1,000,000 draws (computed via Monte-Carlo simulations)
and in the limit that n is large (computed via the algorithms of the present
paper); not surprisingly, there is little difference between the plots for n =
1,000,000 and for the limit that n is large. The lines in Figure 1 corresponding
to n = 1,000,000 draws are colored green; the lines corresponding to the limit
of large n are black.

Remark 6.1. For each example, we computed the cdf 7 for n = 1,000,000 draws
via 40,000 Monte-Carlo simulations. A straightforward argument based on the
binomial distribution, detailed in Remark 3.4 of Perkins, Tygert, and Ward
(2011a), shows that the standard errors of the resulting estimates of the P-values
P are equal to /P(1 — P)/40000 < 0.0025, ensuring that the standard errors
of the plotted abscissae « for the green points in Figure 1 are approximately
va(l —a)/40000 < 0.0025 (roughly the size of the radii of the plotted points).

Remark 6.2. For each example, we plotted the cdf 7 in the limit of a large
number n of draws via the scheme of Section 5. Figure 1 displays the points
(a, () = (1 — Fo(x),1 = F,(x)) for the 10000 values = = 1/2000, 2/2000, ...,
10000/2000, in the limit that the number n of draws is large, where Fy(x) and
F,(x) are defined in Section 5 and computed to at least 6-digit accuracy via the
method of Section 4.

Table 1 summarizes computational costs of the procedure described in Sec-
tion 4. The headings of Table 1 have the following meanings:

e m is the number of bins in the probability distributions py and p,.

e ¢o is the maximum number of quadrature nodes required in any of the
10000 evaluations of Fy plotted in Figure 1 (Section 5 defines Fyp), using
adaptive Gaussian quadratures as described in Remark 3.2.

® ¢, is the maximum number of quadrature nodes required in any of the
10000 evaluations of Fy plotted in Figure 1 (Section 5 defines F}), using
adaptive Gaussian quadratures as described in Remark 3.2.

e { is the time in seconds required to perform the quadratures for both
Fyo(z) and F,(x) at a single value of x, amortized over the 10000 pairs
(1 = Fo(x),1 — Fy(z)) plotted in Figure 1 (Section 5 defines Fy and Fy,).

6.1. Uniform model

For our first example, we take

(Po)x =1/10 (39)
for k=1, 2,...,10, and take

ar = (-1)%/5 (40)
for k=1, 2, ..., 10. The Euclidean distance is equivalent to the canonical 2

statistic for this example, since pg is a uniform distribution.
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6.2. Nonuniform model

For our second example, we take

(o) 1/2, k=1
POk = 1/198, k=2,3,...,100

for k=1, 2, ..., 100, and take

B 2/3, k=1
k= { —2/297, k=2,3,...,100 (42)

for k=1,2, ..., 100.

6.3. Poisson model

For our third example, we take
(po)i = e ?3*1/(k —1)! (43)
for k=1,2,3, ..., and take

ar =14 (=1D)*/2, k=56 (44)
0, k=1,8,9,
fork=1,2,3,....For all numerical computations associated with this example,

we can truncate to the first 20 bins, since Y72, (po)r < 1071°.

6.4. Poisson model with a different alternative

For our fourth example, we again take
(po) = e #3571 /(k — 1) (45)
for k=1, 2, 3, ..., but now take

1, k=1
ar =14 —1/11, k=2,3,...,12 (46)
0, k=1314,15,...

fork =1,2,3,....For all numerical computations associated with this example,
we can truncate to the first 20 bins, since Y2, (po)r < 1071°.

Remark 6.3. The right-hand side of (31) is 8.233 for Subsection 6.1, 2.443
for Subsection 6.2, and 24.05 for Subsection 6.3. As discussed in Remark 3.5,
roundoff errors in the numerical evaluation of (16) are therefore guaranteed to
be negligible for the standard floating-point arithmetic (the mantissa in the
standard, double-precision arithmetic has a dynamic range of about 5 - 10*° >
24.05). The right-hand side of (31) is 1.478 - 1016 for Subsection 6.4, so we
used (34) rather than (16) for the last example (Remark 3.8 explains why).
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TABLE 1
Computational costs

| m 90 da t
example 1 10 230 230 0.006
example 2 | 100 530 550 0.090
example 3 20 250 330 0.013
example 4 20 350 350 0.010

We used Fortran 77 and ran all examples on one core of a 2.2 GHz Intel
Core 2 Duo microprocessor with 2 MB of L2 cache. Our code is compliant with
the IEEE double-precision standard (so that the mantissas of variables have
approximately one bit of precision less than 16 digits, yielding a relative preci-
sion of about 2 - 10716). We diagonalized the matrix B defined in (7) using the
Jacobi algorithm (see, for example, Chapter 8 of Golub and Van Loan (1996)),
not taking advantage of Remark 2.2; explicitly forming the entries of the matrix
B defined in (7) can incur a numerical error of at most the machine precision
(about 2 - 10716) times maxi<k<m (Po)k/ mini<x<m(Po)k, yielding 6-digit accu-
racy or better for all our examples. A future article will exploit the interlacing
properties of eigenvalues, following Gu and Eisenstat (1994), to obtain higher
precision. Of course, even 4-digit precision would suffice for most statistical ap-
plications; however, modern computers can produce high accuracy very fast, as
the examples in this section illustrate.
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